首页> 外文期刊>Environmental sciences Europe >Integrierte Treibhausgasbewertung der Prozessketten von Erdgas und industriellem Biomethan in Deutschland
【24h】

Integrierte Treibhausgasbewertung der Prozessketten von Erdgas und industriellem Biomethan in Deutschland

机译:德国天然气和工业生物甲烷过程链的综合温室气体评估

获取原文
           

摘要

Background The use of natural gas has increased in the last years. In the future, its import supply and transport structure will diversify (longer distances, higher share of LNG (liquefied natural gas), new pipelines). Thus the process chain and GHG emissions of the production, processing, transport and distribution might change. Simultaneously, the injection of bio methane into the natural gas grid is becoming more important. Although its combustion is regarded as climate neutral, during the production processes of bio methane GHG emissions are caused. The GHG emissions occurring during the process chain of energy fuels are relevant for the discussion on climate policy and decision making processes. They are becoming even more important, considering the new Fuel Quality Directive of the EU (Dec. 2008), which aims at controlling emissions of the fuel process chains. Aim In the context of the aspects outlined above the aim is to determine the future development of gas supply for Germany and the resulting changes in GHG emissions of the whole process chain of natural gas and bio methane. With the help of two gas consumption scenarios and an LCA of bio methane, the amount of future emissions and emission paths until 2030 can be assessed and used to guide decision processes in energy policy. Results and discussion The process chain of bio methane and its future technical development are outlined and the related emissions calculated. The analysis is based on an accompanying research study on the injection of bio methane to the German gas grid. Two types of biogas plants have been considered whereof the “optimised technology” is assumed to dominate the future market. This is the one which widely exploits the potential of process optimisation of the current “state of the art” plant. The specific GHG emissions of the process chain can thus be nearly halved from currently 27.8?t CO2-eq./TJ to 14.8?t CO2-eq./TJ in 2030. GHG emissions of the natural gas process chain have been analysed in detail in a previous article. Significant modifications and a decrease of specific emissions is possible, depending on the level of investment in the modernisation of the gas infrastructure and the process improvements. These mitigation options might neutralise the emission increase resulting from longer distances and energy intensive processes. In the last section two scenarios (low and high consumption) illustrate the possible development of the German gas supply until 2030, given an overall share of 8–12?% of bio methane. Considering the dynamic emission factors calculated in the former sections, the overall gas emissions and average specific emissions of German gas supply can be given. The current emissions of 215.4 million t CO2-eq. are reduced by 25?% in the low-consumption scenario (162 million t CO2-eq.), where consumption is reduced by 17?%. Assuming a consumption which is increased by 17?% in 2030, emissions are around 7?% higher (230.9 million t CO2-eq.) than today. Conclusions Gaseous fuels will still play a significant role for the German energy supply in the next two decades. The GHG emissions mainly depend on the amount of gas used. Thus, energy efficiency will be a key issue in the climate and energy related policy discussion. A higher share of bio methane and high investments in mitigation and best available technologies can significantly reduce the emissions of the process chain. The combustion of bio methane is climate neutral compared to 56?t CO2/TJ caused by the direct combustion of natural gas (or 111?t CO2/TJ emitted by lignite).
机译:背景技术近年来,天然气的使用有所增加。将来,其进口供应和运输结构将多样化(距离更长,液化天然气(LNG)份额更高,新管道)。因此,生产,加工,运输和分配的过程链和温室气体排放可能发生变化。同时,将生物甲烷注入天然气网格变得越来越重要。尽管其燃烧被认为是气候中性的,但在生产生物甲烷的过程中会引起温室气体排放。在能源燃料过程链中发生的温室气体排放与气候政策和决策过程的讨论有关。考虑到新的欧盟《燃油质量指令》(2008年12月),这些指令变得越来越重要,该指令旨在控制燃料工艺链的排放。目的在以上概述的方面中,目标是确定德国天然气供应的未来发展以及天然气和生物甲烷气整个过程链中温室气体排放量的变化。借助两种气体消耗情景和生物甲烷的LCA,可以评估到2030年的未来排放量和排放路径,并将其用于指导能源政策的决策过程。结果与讨论概述了生物甲烷的工艺链及其未来的技术发展,并计算了相关的排放量。该分析基于对德国沼气注入生物甲烷的伴随研究。已经考虑了两种类型的沼气厂,其中“优化技术”被认为将主导未来的市场。这是一种广泛利用当前“最先进”工厂的工艺优化潜力的设备。因此,到2030年,工艺链的特定温室气体排放量可从目前的27.8?t CO2-eq./TJ减少近一半,降至目前的14.8?t CO2-eq./TJ。对天然气工艺链的温室气体排放进行了详细分析在上一篇文章中。取决于天然气基础设施现代化和工艺改进的投资水平,可以进行重大修改并减少特定排放。这些缓解措施可能会抵消距离较长和能源密集型过程导致的排放增加。在最后一节中,两种情景(低消耗量和高消耗量)说明了到2030年德国天然气供应的可能发展,假设生物甲烷的总份额为8-12%。考虑到前几部分中计算的动态排放因子,可以得出德国天然气供应的总体气体排放量和平均特定排放量。目前的排放量为2.154亿吨二氧化碳当量。在低消耗情景(1.62亿吨二氧化碳当量)下,排放量减少了25%,在这种情况下,消耗量减少了17%。假设2030年的消费量增加17%,那么排放量(2.309亿吨二氧化碳当量)将比今天高出约7%。结论在接下来的二十年中,气态燃料仍将在德国能源供应中发挥重要作用。温室气体排放量主要取决于所用气体的量。因此,能源效率将是与气候和能源有关的政策讨论中的关键问题。更高比例的生物甲烷以及在减排和最佳可用技术上的大量投资可以显着减少工艺链的排放。与天然气直接燃烧(或褐煤排放的111?t CO2 / TJ)引起的56?t CO2 / TJ相比,生物甲烷的燃烧是气候中性的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号