首页> 外文期刊>Environmental Research Letters >Life cycle greenhouse gas impacts of ethanol, biomethane and limonene production from citrus waste
【24h】

Life cycle greenhouse gas impacts of ethanol, biomethane and limonene production from citrus waste

机译:柑橘废物产生乙醇,生物甲烷和柠檬烯的生命周期温室气体影响

获取原文
           

摘要

The production of biofuel from cellulosic residues can have both environmental and financial benefits. A particular benefit is that it can alleviate competition for land conventionally used for food and feed production. In this research, we investigate greenhouse gas (GHG) emissions associated with the production of ethanol, biomethane, limonene and digestate from citrus waste, a byproduct of the citrus processing industry. The study represents the first life cycle-based evaluations of citrus waste biorefineries. Two biorefinery configurations are studied—a large biorefinery that converts citrus waste into ethanol, biomethane, limonene and digestate, and a small biorefinery that converts citrus waste into biomethane, limonene and digestate. Ethanol is assumed to be used as E85, displacing gasoline as a light-duty vehicle fuel; biomethane displaces natural gas for electricity generation, limonene displaces acetone in solvents, and digestate from the anaerobic digestion process displaces synthetic fertilizer. System expansion and two allocation methods (energy, market value) are considered to determine emissions of co-products. Considerable GHG reductions would be achieved by producing and utilizing the citrus waste-based products in place of the petroleum-based or other non-renewable products. For the large biorefinery, ethanol used as E85 in light-duty vehicles results in a 134% reduction in GHG emissions compared to gasoline-fueled vehicles when applying a system expansion approach. For the small biorefinery, when electricity is generated from biomethane rather than natural gas, GHG emissions are reduced by 77% when applying system expansion. The life cycle GHG emissions vary substantially depending upon biomethane leakage rate, feedstock GHG emissions and the method to determine emissions assigned to co-products. Among the process design parameters, the biomethane leakage rate is critical, and the ethanol produced in the large biorefinery would not meet EISA's requirements for cellulosic biofuel if the leakage rate is higher than 9.7%. For the small biorefinery, there are no GHG emission benefits in the production of biomethane if the leakage rate is higher than 11.5%. Compared to system expansion, the use of energy and market value allocation methods generally results in higher estimates of GHG emissions for the primary biorefinery products (i.e., smaller reductions in emissions compared to reference systems).
机译:由纤维素残留物生产生物燃料可同时具有环境和经济效益。一个特别的好处是它可以减轻传统上用于粮食和饲料生产的土地的竞争。在这项研究中,我们调查了与乙醇,生物甲烷,柠檬烯和柑桔废料(柑桔加工工业的副产品)产生的消化物相关的温室气体(GHG)排放。这项研究代表了对柑橘类废物生物精炼厂的首次基于生命周期的评估。研究了两种生物精炼厂配置–大型生物精炼厂将柑桔废物转化为乙醇,生物甲烷,柠檬烯和消化物,以及小型生物精炼厂将柑桔废物转化为生物甲烷,柠檬烯和消化物。假设将乙醇用作E85,代替汽油作为轻型车用燃料。生物甲烷替代天然气用于发电,柠檬烯替代溶剂中的丙酮,厌氧消化过程中的消化物替代合成肥料。考虑系统扩展和两种分配方法(能源,市场价值)来确定副产品的排放量。通过生产和利用柑橘类废物基产品代替石油基或其他不可再生产品,可以实现温室气体的显着减少。对于大型生物炼油厂,采用系统扩展方法时,与汽油车相比,轻型车中用作E85的乙醇可减少134%的温室气体排放。对于小型生物炼油厂来说,当使用生物甲烷而非天然气发电时,应用系统扩展后温室气体排放量将减少77%。生命周期的温室气体排放量根据生物甲烷泄漏率,原料温室气体排放量和确定分配给副产品的排放量的方法而有很大不同。在工艺设计参数中,生物甲烷泄漏率至关重要,如果泄漏率高于9.7%,大型生物炼油厂生产的乙醇将无法满足EISA对纤维素生物燃料的要求。对于小型生物炼油厂,如果泄漏率高于11.5%,则在生产生物甲烷中没有温室气体排放的好处。与系统扩展相比,能源和市场价值分配方法的使用通常会导致对主要生物精炼产品的温室气体排放进行更高的估算(即与参考系统相比,减少的排放量较小)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号