首页> 外文期刊>Environmental Research Letters >Pan-Arctic land–atmospheric fluxes of methane and carbon dioxide in response to climate change over the 21st century
【24h】

Pan-Arctic land–atmospheric fluxes of methane and carbon dioxide in response to climate change over the 21st century

机译:响应21世纪气候变化的泛北极陆地和大气甲烷和二氧化碳通量

获取原文
           

摘要

Download video Transcript View all Environ. Res. Lett. video abstracts Future changes of pan-Arctic land–atmospheric methane (CH4) and carbon dioxide (CO2) depend on how terrestrial ecosystems respond to warming climate. Here, we used a coupled hydrology–biogeochemistry model to make our estimates of these carbon exchanges with two contrasting climate change scenarios (no-policy versus policy) over the 21st century, by considering (1)?a detailed water table dynamics and (2)?a permafrost-thawing effect. Our simulations indicate that, under present climate conditions, pan-Arctic terrestrial ecosystems act as a net greenhouse gas (GHG) sink of ?0.2 Pg CO2-eq. yr?1, as a result of a CH4 source (53?Tg CH4 yr?1) and a CO2 sink (?0.4 Pg C yr?1). In response to warming climate, both CH4 emissions and CO2 uptakes are projected to increase over the century, but the increasing rates largely depend on the climate change scenario. Under the non-policy scenario, the CH4 source and CO2 sink are projected to increase by 60% and 75% by 2100, respectively, while the GHG sink does not show a significant trend. Thawing permafrost has a small effect on GHG sink under the policy scenario; however, under the no-policy scenario, about two thirds of the accumulated GHG sink over the 21st century has been offset by the carbon losses as CH4 and CO2 from thawing permafrost. Over the century, nearly all CO2-induced GHG sink through photosynthesis has been undone by CH4-induced GHG source. This study indicates that increasing active layer depth significantly affects soil carbon decomposition in response to future climate change. The methane emissions considering more detailed water table dynamics continuously play an important role in affecting regional radiative forcing in the pan-Arctic.
机译:下载视频成绩单查看所有环境。 Res。来吧视频摘要泛北极陆地-大气甲烷(CH4)和二氧化碳(CO2)的未来变化取决于陆地生态系统如何响应气候变暖。在这里,我们通过考虑(1)?详细的地下水位动态和(2),使用水文-生物地球化学耦合模型对21世纪两个相反的气候变化情景(无政策与政策)进行了这些碳交换的估算。 )永久冻土融化作用。我们的模拟表明,在当前的气候条件下,泛北极陆地生态系统充当的净温室气体(GHG)汇流量约为0.2 Pg CO2-eq。 yr?1,这是由于CH4源(53?Tg CH4 yr?1)和CO2汇(?0.4 Pg C yr?1)。为应对气候变暖,预计在一个世纪内,CH4排放量和CO2吸收量都将增加,但是增加的速度在很大程度上取决于气候变化情况。在非政策情景下,到2100年,CH4排放源和CO2排放量预计将分别增长60%和75%,而温室气体排放量不会显示出显着趋势。在政策情景下,冻土的融化对温室气体汇的影响很小。然而,在无政策的情况下,21世纪累积的温室气体汇的大约三分之二已被融化的永久冻土中的CH4和CO2造成的碳损失所抵消。一个世纪以来,几乎所有通过光合作用引起的由CO2引起的温室气体下沉都被CH4引起的温室气体源撤消。这项研究表明,增加活动层深度会极大地影响土壤碳的分解,以应对未来的气候变化。考虑到更详细的地下水位动态,甲烷排放量在影响整个北极地区的区域辐射强迫方面持续发挥着重要作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号