...
首页> 外文期刊>eLife journal >A library of MiMICs allows tagging of genes and reversible, spatial and temporal knockdown of proteins in Drosophila
【24h】

A library of MiMICs allows tagging of genes and reversible, spatial and temporal knockdown of proteins in Drosophila

机译:MiMICs库可对果蝇中的基因进行标记并进行蛋白质的可逆,时空抑制

获取原文
   

获取外文期刊封面封底 >>

       

摘要

In the last few decades, technical advances in altering the genes of organisms have led to many discoveries about how genes work. For example, it is now possible to add a specific DNA sequence to a gene so that the protein it makes will carry a ‘tag’ that enables us to track it in cells. One such tag is called green fluorescent protein (GFP) and it is often used to study other proteins in living cells because it produces green fluorescence that can be detected under a microscope. It is labor intensive to add tags to individual genes, so this limits the number of proteins that can be studied in this way. In 2011, researchers developed a new method that can easily tag many genes in fruit flies. It makes use of small sections of DNA called transposons, which are able to move around the genome by ‘cutting’ themselves out of one location and ‘pasting’ themselves in somewhere else. The researchers used a transposon called Minos, which is naturally found in fruit flies. When Minos inserts into a gene, it often disrupts the gene and stops it from working. However, the researchers could swap the inserted transposon for a gene encoding GFP by making use of a natural process that rearranges DNA in cells. This resulted in the protein encoded by the gene containing GFP and so it can be detected under a microscope. This method allowed the researchers to create a collection of fly lines that have the GFP tag on many different proteins. Now, Nagarkar-Jaiswal et al. have greatly expanded this initial collection. More than 75% of GFP-tagged proteins worked normally and the flies producing these altered proteins remain healthy. It is possible to use a technique called RNA interference against the GFP to lower the production of the tagged proteins. Moreover, Nagarkar-Jaiswal et al. show that it is also possible to degrade the tagged proteins so that less protein is present. The removal of proteins is reversible and can be done in specific tissues during any phase in fly development. These techniques allow researchers to directly associate the loss of the protein with the consequences for the fly. This collection of fruit fly lines is a useful resource that can help us understand how genes work. The method for tagging the proteins could also be modified to work in other animals.
机译:在过去的几十年中,改变生物体基因的技术进步已导致有关基因如何工作的许多发现。例如,现在可以在基因中添加特定的DNA序列,从而使它产生的蛋白质带有一个“标签”,使我们能够在细胞中对其进行追踪。一种这样的标签称为绿色荧光蛋白(GFP),它通常用于研究活细胞中的其他蛋白质,因为它产生绿色荧光,可以在显微镜下检测到。向单个基因添加标签非常费力,因此这限制了可以通过这种方式研究的蛋白质数量。 2011年,研究人员开发了一种可以轻松标记果蝇中许多基因的新方法。它利用称为转座子的DNA小片段,通过将自己“切出”一个位置并“粘贴”到其他位置来在基因组中移动。研究人员使用了一种称为Minos的转座子,它是在果蝇中自然发现的。当Minos插入基因时,它通常会破坏基因并使其停止工作。然而,研究人员可以通过利用自然过程重新排列细胞中的DNA,将插入的转座子换成编码GFP的基因。这产生了由包含GFP的基因编码的蛋白质,因此可以在显微镜下检测到。这种方法使研究人员能够创建一系列在许多不同蛋白质上带有GFP标签的蝇系。现在,Nagarkar-Jaiswal等人。已经大大扩展了这个最初的收藏。超过75%的GFP标记蛋白正常工作,并且产生这些蛋白改变的果蝇仍然健康。可以使用一种称为RNA干扰GFP的技术来降低标记蛋白的产量。此外,Nagarkar-Jaiswal等人。结果表明,也可以降解标记的蛋白质,从而减少蛋白质的含量。蛋白质的去除是可逆的,可以在果蝇发育的任何阶段在特定组织中完成。这些技术使研究人员可以将蛋白质的损失与果蝇的后果直接联系起来。收集的果蝇系是有用的资源,可以帮助我们了解基因的工作原理。标记蛋白质的方法也可以修改为在其他动物中起作用。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号