...
首页> 外文期刊>eLife journal >Chronic 2P-STED imaging reveals high turnover of dendritic spines in the hippocampus in vivo
【24h】

Chronic 2P-STED imaging reveals high turnover of dendritic spines in the hippocampus in vivo

机译:慢性2P-STED成像显示体内海马体中树突棘的高周转率

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Rewiring neural circuits by the formation and elimination of synapses is thought to be a key cellular mechanism of learning and memory in the mammalian brain. Dendritic spines are the postsynaptic structural component of excitatory synapses, and their experience-dependent plasticity has been extensively studied in mouse superficial cortex using two-photon microscopy in vivo. By contrast, very little is known about spine plasticity in the hippocampus, which is the archetypical memory center of the brain, mostly because it is difficult to visualize dendritic spines in this deeply embedded structure with sufficient spatial resolution. We developed chronic 2P-STED microscopy in mouse hippocampus, using a ‘hippocampal window’ based on resection of cortical tissue and a long working distance objective for optical access. We observed a two-fold higher spine density than previous studies and measured a spine turnover of ~40% within 4 days, which depended on spine size. We thus provide direct evidence for a high level of structural rewiring of synaptic circuits and new insights into the structure-dynamics relationship of hippocampal spines. Having established chronic super-resolution microscopy in the hippocampus in vivo, our study enables longitudinal and correlative analyses of nanoscale neuroanatomical structures with genetic, molecular and behavioral experiments.
机译:通过形成和消除突触来重新布线神经回路被认为是哺乳动物大脑中学习和记忆的关键细胞机制。树突棘是兴奋性突触的突触后结构的组成部分,其依赖于经验的可塑性已在小鼠的浅表皮层中使用双光子显微镜在体内进行了广泛研究。相比之下,人们对海马的脊柱可塑性知之甚少,海马是大脑的原型记忆中心,主要是因为很难以足够的空间分辨率可视化这种深层嵌入结构中的树突棘。我们在小鼠海马体上建立了慢性2P-STED显微镜,使用了基于切除皮层组织的“海马窗”和用于光学访问的长工作距离物镜。我们观察到的脊柱密度比以前的研究高两倍,并且在4天内测得的脊柱周转率约为40%,这取决于脊柱的大小。因此,我们为突触回路的高水平结构重新布线提供了直接证据,并为海马棘的结构-动力学关系提供了新的见解。在体内海马体中建立了慢性超分辨率显微镜后,我们的研究能够通过遗传,分子和行为实验对纳米级神经解剖结构进行纵向和相关分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号