首页> 外文期刊>eLife journal >Dynamic clustering of dynamin-amphiphysin helices regulates membrane constriction and fission coupled with GTP hydrolysis
【24h】

Dynamic clustering of dynamin-amphiphysin helices regulates membrane constriction and fission coupled with GTP hydrolysis

机译:动力-amphiphysin螺旋的动态群集调节膜收缩和裂变与GTP水解相结合。

获取原文
           

摘要

The nerve cells that make up a nervous system connect at junctions known as synapses. When a nerve impulse reaches the end of the cell, membrane-bound packages called vesicles fuse with the surface membrane and release their contents to the outside. The contents, namely chemicals called neurotransmitters, then travels across the synapse, relaying the signal to the next cell. Nerve cells can fire many times per second. The membrane from fused vesicles must be retrieved from the surface membrane and recycled to make new vesicles, ready to transmit more signals across the synapse. Many proteins at these sites are involved in folding the fused membrane back into the cell, constricting the opening, and eventually pinching off the new vesicles – a process known as endocytosis. Two proteins named dynamin and amphiphysin cooperate in this process, but their precise mechanism remained elusive. Dynamin is a protein that acts like a motor; it breaks down a molecule called GTP to release energy. Previous studies have seen that dynamin-amphiphysin complexes join end to end to form long helical structures. Takeda et al. have now looked at how the structure of the helices changes during endocytosis. This revealed that the dynamin-amphiphysin helices rearrange to form clusters when the GTP is broken down. Further analysis showed that the folded membrane becomes constricted at regions that are not coated with the clusters of dynamin-amphiphysin helices. Takeda et al. also discovered that amphiphysin controls the size of the clusters to help make the new vesicles more uniform. The gene for dynamin is altered in a number of disorders affecting the nervous system and muscles, including epileptic encephalopathy, Charcot-Marie-Tooth disease and congenital myopathy. Moreover, a neurological disorder characterized by muscle stiffness (known as Stiff-person syndrome) occurs when an individual’s immune system mistakenly attacks the amphiphysin protein. As such, these new findings will not only help scientists to better understand the process of endocytosis, but they will also give new insight into a number of human diseases.
机译:组成神经系统的神经细胞在称为突触的连接处连接。当神经冲动到达细胞末端时,称为囊泡的膜结合包装与表面膜融合,并将其内含物释放到外部。内含物,即称为神经递质的化学物质,然后穿过突触,将信号传递至下一个细胞。神经细胞每秒可以发射多次。来自融合囊泡的膜必须从表面膜中回收并回收以制造新的囊泡,以准备在突触中传输更多信号。这些位置的许多蛋白质参与将融合膜折叠回细胞,限制开口,最终夹住新的囊泡,这一过程称为内吞作用。在此过程中,两种名为动力蛋白和两亲性蛋白的蛋白协同作用,但它们的确切机制仍不清楚。动力蛋白是一种像马达一样起作用的蛋白质。它会分解称为GTP的分子以释放能量。先前的研究已经看到,动力蛋白-两栖生物复合物首尾相连以形成长螺旋结构。武田等。现在已经研究了内吞过程中螺旋结构的变化。这表明,当GTP分解时,动力分子-两栖生物螺旋会重新排列以形成簇。进一步的分析表明,折叠的膜在未覆盖有动力分子-两性螺旋体簇的区域变窄。武田等。他还发现,两亲生物可控制簇的大小,以帮助使新的囊泡更均匀。动力蛋白的基因在许多影响神经系统和肌肉的疾病中发生了改变,包括癫痫性脑病,Charcot-Marie-Tooth病和先天性肌病。此外,当一个人的免疫系统错误地攻击两栖动物蛋白时,就会发生一种以肌肉僵硬为特征的神经系统疾病(称为僵人综合征)。这样,这些新发现不仅将有助于科学家更好地了解内吞作用的过程,而且还将对许多人类疾病提供新的见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号