首页> 外文期刊>Electronic Colloquium on Computational Complexity >Beyond Natural Proofs: Hardness Magnification and Locality
【24h】

Beyond Natural Proofs: Hardness Magnification and Locality

机译:超越自然证明:硬度放大率和局部性

获取原文
       

摘要

Hardness magnification reduces major complexity separations (such as EX P N C 1 ) to proving lower bounds for some natural problem Q against weak circuit models. Several recent works [OS18, MMW19, CT19, OPS19, CMMW19, Oli19, CJW19a] have established results of this form. In the most intriguing cases, the required lower bound is known for problems that appear to be significantly easier than Q , while Q itself is susceptible to lower bounds but these are not yet sufficient for magnification. In this work, we provide more examples of this phenomenon, and investigate the prospects of proving new lower bounds using this approach. In particular, we consider the following essential questions associated with the hardness magnification program:– Does hardness magnification avoid the natural proofs barrier of Razborov and Rudich [RR97]? – Can we adapt known lower bound techniques to establish the desired lower bound for Q ?We establish that some instantiations of hardness magnification overcome the natural proofs barrier in the following sense: slightly superlinear-size circuit lower bounds for certain versions of the minimum circuit size problem MCSP imply the non-existence of natural proofs. As a corollary of our result, we show that certain magnification theorems not only imply strong worst-case circuit lower bounds but also rule out the existence of efficient learning algorithms. Hardness magnification might sidestep natural proofs, but we identify a source of difficulty when trying to adapt existing lower bound techniques to prove strong lower bounds via magnification. This is captured by a locality barrier: existing magnification theorems unconditionally show that the problems Q considered above admit highly efficient circuits extended with small fan-in oracle gates, while lower bound techniques against weak circuit models quite often easily extend to circuits containing such oracles. This explains why direct adaptations of certain lower bounds are unlikely to yield strong complexity separations via hardness magnification.
机译:硬度放大可以减少主要的复杂度分离(例如EX P N C 1),从而针对弱电路模型证明某些自然问题Q的下界。最近的一些著作[OS18,MMW19,CT19,OPS19,CMMW19,Oli19,CJW19a]已经确定了这种形式的结果。在最引人入胜的情况下,已知的所需下限似乎比Q容易得多,而Q本身很容易受到下限的影响,但这些不足以放大。在这项工作中,我们提供了有关此现象的更多示例,并研究了使用这种方法证明新的下界的前景。特别是,我们考虑以下与硬度放大程序相关的基本问题:–硬度放大是否避免了Razborov和Rudich [RR97]的自然证明障碍? –我们是否可以采用已知的下限技术来确定Q的所需下限?我们建立了一些硬度放大实例在以下意义上克服了自然证明障碍:某些尺寸的最小电路尺寸的版本具有稍微超线性尺寸的电路下限问题MCSP暗示不存在自然证明。作为结果的推论,我们证明了某些放大定理不仅暗示强的最坏情况电路下限,而且还排除了有效学习算法的存在。硬度放大可能会避开自然证明,但是当我们尝试采用现有的下界技术通过放大来证明强下界时,我们发现了困难的根源。这是由局部障碍捕获的:现有的放大定理无条件地表明,上述问题Q允许使用小的扇入预兆门扩展高效电路,而针对弱电路模型的下限技术通常很容易扩展到包含此类预言的电路。这就解释了为什么某些下限的直接匹配不太可能通过硬度放大来产生强复杂性分离。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号