首页> 外文期刊>Electronic Colloquium on Computational Complexity >Graph Isomorphism, Color Refinement, and Compactness
【24h】

Graph Isomorphism, Color Refinement, and Compactness

机译:图同构,颜色细化和紧凑度

获取原文
           

摘要

Color refinement is a classical technique used to show that two given graphs G and H are non-isomorphic; it is very efficient, although it does not succeed on all graphs. We call a graph G amenable to color refinement if the color-refinement procedure succeeds in distinguishing G from any non-isomorphic graph H. Tinhofer (1991) explored a linear programming approach to Graph Isomorphism and defined the notion of compact graphs: A graph is compact if its fractional automorphisms polytope is integral. Tinhofer noted that isomorphism testing for compact graphs can be done quite efficiently by linear programming. However, the problem of characterizing and recognizing compact graphs in polynomial time remains an open question. Our results are summarized below: – We determine the exact range of applicability of color refinement by showing that amenable graphs are recognizable in time O((n + m)logn), where n and m denote the number of vertices and the number of edges in the input graph. – We show that all amenable graphs are compact. Thus, the applicability range for Tinhofer’s linear programming approach to isomorphism testing is at least as large as for the combinatorial approach based on color refinement. – Exploring the relationship between color refinement and compactness further, we study related combinatorial and algebraic graph properties introduced by Tinhofer and Godsil. We show that the corresponding classes of graphs form a hierarchy and we prove that recognizing each of these graph classes is P-hard. In particular, this gives a first complexity bound for recognizing compact graphs. and defined the notion of compact graphs: A graph is compact if its fractional automorphisms polytope is integral. Tinhofer noted that isomorphism testing for compact graphs can be done quite efficiently by linear programming. However, the problem of characterizing and recognizing compact graphs in polynomial time remains an open question. Our results are summarized below: Changes to previous version: This version is identical to Version 2, except for the better formatted ECCC abstract and modified comments: 1. The incorrect Lemma 10 in the first version is now corrected (see Theorem 9 in the new version). 2. P-hardness proofs for the classes Discrete, Amenable, Compact, Tinhofer, and Refinable are included. 3. A graph separating the classes Tinhofer and Refinable is now included. We had left this open in the first version.
机译:色彩细化是一种经典技术,用于显示两个给定的图形G和H是非同构的。尽管并非在所有图表上都成功,但它非常有效。如果颜色细化过程成功地将G与任何非同构图区分开来,我们将图G称为适合颜色细化的图形.Tinhofer(1991)探索了图同构的线性编程方法,并定义了紧凑图的概念:如果其分数同构多表位是整数,则表示紧密。 Tinhofer指出,通过线性编程可以非常有效地完成紧凑图的同构测试。但是,在多项式时间内表征和识别紧凑图的问题仍然是一个悬而未决的问题。我们的结果总结如下:–通过显示在时间O((n + m)logn)中可识别的可辨认图形来确定色彩细化的确切范围,其中n和m表示顶点数和边数在输入图中。 –我们显示所有可修饰的图都是紧凑的。因此,Tinhofer的线性编程方法在同构测试中的适用范围至少与基于色彩优化的组合方法的适用范围一样大。 –进一步探索色彩细化和紧密度之间的关系,我们研究了Tinhofer和Godsil引入的相关组合和代数图属性。我们证明了图的相应类形成了一个层次结构,并且证明了识别这些图类中的每一个都是P难的。特别地,这给出了识别紧凑图的第一复杂度界限。并定义了紧凑图的概念:如果图的分数自同构多态性是整数,则它是紧凑的。 Tinhofer指出,通过线性编程可以非常有效地完成紧凑图的同构测试。但是,在多项式时间内表征和识别紧凑图的问题仍然是一个悬而未决的问题。我们的结果总结如下:对先前版本的更改:此版本与版本2相同,除了格式更好的ECCC摘要和经修改的注释:1.现在,更正了第一个版本中不正确的引理10(请参阅新的定理9)。版)。 2.包括离散,可适应,紧凑,Tinhofer和可精炼类的P硬度证明。 3.现在包括一个将Tinhofer和Refinable类别分开的图表。我们在第一个版本中将此保留为开放状态。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号