首页> 外文期刊>Electronic Colloquium on Computational Complexity >Generalized Matrix Completion and Algebraic Natural Proofs
【24h】

Generalized Matrix Completion and Algebraic Natural Proofs

机译:广义矩阵完成和代数自然证明

获取原文
           

摘要

Algebraic natural proofs were recently introduced by Forbes, Shpilka and Volk (Proc. of the 49th Annual {ACM} {SIGACT} Symposium on Theory of Computing (STOC), pages {653--664}, 2017) and independently by Grochow, Kumar, Saks and Saraf~(CoRR, abs/1701.01717, 2017) as an attempt to transfer Razborov and Rudich's famous barrier result (J. Comput. Syst. Sci., 55(1): 24--35, 1997) for Boolean circuit complexity to algebraic complexity theory. Razborov and Rudich's barrier result relies on a widely believed assumption, namely, the existence of pseudo-random generators. Unfortunately, there is no known analogous theory of pseudo-randomness in the algebraic setting. Therefore, Forbes et al.~use a concept called succinct hitting sets instead. This assumption is related to polynomial identity testing, but it is currently not clear how plausible this assumption is. Forbes et al.~are only able to construct succinct hitting sets against rather weak models of arithmetic circuits.Generalized matrix completion is the following problem: Given a matrix with affine linear forms as entries, find an assignment to the variables in the linear forms such that the rank of the resulting matrix is minimal. We call this rank the completion rank. Computing the completion rank is an NP -hard problem. As our first main result, we prove that it is also NP -hard to determine whether a given matrix can be approximated by matrices of completion rank b . The minimum quantity b for which this is possible is called border completion rank (similar to the border rank of tensors). Naturally, algebraic natural proofs can only prove lower bounds for such border complexity measures. Furthermore, these border complexity measures play an important role in the geometric complexity program.Using our hardness result above, we can prove the following barrier: We construct a small family of matrices with affine linear forms as entries and a bound b , such that at least one of these matrices does not have an algebraic natural proof of polynomial size against all matrices of border completion rank b , unless coNP BPP . This is an algebraic barrier result that is based on a well-established and widely believed conjecture. The complexity class BPP is known to be a subset of the more well known complexity class MA in the literature. Thus BPP can be replaced by MA in the statements of all our results. With similar techniques, we can also prove that tensor rank is hard to approximate. Furthermore, we prove a similar result for the variety of matrices with permanent zero. There are no algebraic polynomial size natural proofs for the variety of matrices with permanent zero, unless P # P BPP . On the other hand, we are able to prove that the geometric complexity theory approach initiated by Mulmuley and Sohoni ({SIAM} J. Comput. 31(2): 496--526, 2001) yields proofs of polynomial size for this variety, therefore overcoming the natural proofs barrier in this case.
机译:代数自然证明最近由Forbes,Shpilka和Volk(第49届{ACM} {SIGACT}计算理论研讨会(STOC)进程,第{653--664}页,2017年)提出,并由Grochow,Kumar独立提出,Saks和Saraf〜(CoRR,abs / 1701.01717,2017),试图转移Razborov和Rudich的著名屏障结果(J.Comput.Syst.Sci。,55(1):24--35,1997)代数复杂性理论的复杂性。拉兹伯罗夫(Razborov)和鲁迪奇(Rudich)的壁垒结果依赖于一个广泛相信的假设,即伪随机生成器的存在。不幸的是,在代数环境中还没有类似的伪随机理论。因此,《福布斯》等人改用了称为简洁命中集的概念。该假设与多项式身份测试有关,但目前尚不清楚该假设的合理性。 Forbes等人只能针对较弱的算术电路模型构造简洁的命中集。广义矩阵完成是以下问题:给定一个具有仿射线性形式的矩阵作为条目,找到线性形式变量的赋值,例如结果矩阵的秩最小。我们将此等级称为完成等级。计算完成等级是一个NP难题。作为我们的第一个主要结果,我们证明确定给定矩阵是否可以由完成等级b的矩阵近似也很困难。可能的最小数量b被称为边界完成等级(类似于张量的边界等级)。自然,代数自然证明只能证明这种边界复杂性度量的下界。此外,这些边界复杂度度量在几何复杂度程序中也起着重要的作用。使用上面的硬度结果,我们可以证明以下障碍:我们构造了一个仿射线性形式作为入口和边界b的小型矩阵族,使得这些矩阵中的至少一个没有针对边界完成度为b的所有矩阵的多项式大小的代数自然证明,除非有coNP BPP。这是一个代数障碍的结果,它基于一个公认的且广为接受的猜想。众所周知,复杂度等级BPP是文献中更为知名的复杂度等级MA的子集。因此,在我们所有结果的陈述中,BPP可以由MA代替。使用类似的技术,我们还可以证明张量秩很难近似。此外,对于具有永久零的矩阵,我们证明了相似的结果。对于具有永久零的矩阵,没有代数多项式大小的自然证明,除非P#P BPP。另一方面,我们能够证明Mulmuley和Sohoni({SIAM} J. Comput。31(2):496--526,2001)提出的几何复杂度理论方法可以证明该品种的多项式大小,因此,在这种情况下,可以克服自然证明的障碍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号