首页> 外文期刊>Earth System Science Data Discussions >A consistent glacier inventory for Karakoram and Pamir derived from Landsat data: distribution of debris cover and mapping challenges
【24h】

A consistent glacier inventory for Karakoram and Pamir derived from Landsat data: distribution of debris cover and mapping challenges

机译:根据Landsat数据得出的喀喇昆仑山和帕米尔高原冰川的一致清单:碎片覆盖的分布和制图挑战

获取原文
           

摘要

Abstract. Knowledge about the coverage and characteristics of glaciers in High Mountain Asia (HMA) is still incomplete and heterogeneous. However, several applications, such as modelling of past or future glacier development, run-off, or glacier volume, rely on the existence and accessibility of complete datasets. In particular, precise outlines of glacier extent are required to spatially constrain glacier-specific calculations such as length, area, and volume changes or flow velocities. As a contribution to the Randolph Glacier Inventory (RGI) and the Global Land Ice Measurements from Space (GLIMS) glacier database, we have produced a homogeneous inventory of the Pamir and the Karakoram mountain ranges using 28 Landsat TM and ETM+ scenes acquired around the year 2000. We applied a standardized method of automated digital glacier mapping and manual correction using coherence images from the Advanced Land Observing Satellite 1 (ALOS-1) Phased Array type L-band Synthetic Aperture Radar 1 (PALSAR-1) as an additional source of information; we then (i)?separated the glacier complexes into individual glaciers using drainage divides derived by watershed analysis from the ASTER global digital elevation model version?2 (GDEM2) and (ii)?separately delineated all debris-covered areas. Assessment of uncertainties was performed for debris-covered and clean-ice glacier parts using the buffer method and independent multiple digitizing of three glaciers representing key challenges such as shadows and debris cover. Indeed, along with seasonal snow at high elevations, shadow and debris cover represent the largest uncertainties in our final dataset. In total, we mapped more than 27800 glaciers ??0.02km~(2) covering an area of 35?520±1948km~(2) and an elevation range from 2260 to 8600m. Regional median glacier elevations vary from 4150m (Pamir Alai) to almost 5400m (Karakoram), which is largely due to differences in temperature and precipitation. Supraglacial debris covers an area of 3587±662km~(2), i.e. 10% of the total glacierized area. Larger glaciers have a higher share in debris-covered area (up to ??20%), making it an important factor to be considered in subsequent applications (https://doi.org/10.1594/PANGAEA.894707).
机译:抽象。有关亚洲高山(HMA)冰川覆盖范围和特征的知识仍然不完整且种类繁多。但是,一些应用程序,例如对过去或将来的冰川发展,径流或冰川体积的建模,都依赖于完整数据集的存在和可访问性。特别地,需要冰川范围的精确轮廓,才能在空间上限制特定于冰川的计算,例如长度,面积和体积变化或流速。作为对Randolph冰川清单(RGI)和全球太空陆地冰测量(GLIMS)冰川数据库的贡献,我们使用了在一年中获得的28个Landsat TM和ETM +场景,对帕米尔和喀喇昆仑山脉进行了均质盘点。 2000年。我们应用了自动数字冰川测绘和人工校正的标准化方法,该方法使用了来自高级陆地观测卫星1(ALOS-1)相控阵型L波段合成孔径雷达1(PALSAR-1)的相干图像作为附加来源信息;然后,我们(i)使用通过分水岭分析从ASTER全球数字高程模型版本2(GDEM2)进行分水岭分析将冰川复合体分为单个冰川,以及(ii)分别划定所有被碎片覆盖的区域。使用缓冲方法以及三个代表代表性挑战(例如阴影和碎片覆盖)的冰川的独立多次数字化处理,对覆盖了冰屑的冰川部分和干净的冰川部分进行了不确定性评估。确实,随着高海拔地区的季节性降雪,阴影和碎片覆盖物是我们最终数据集中最大的不确定性。总共绘制了27800多个≥0.02km〜(2)的冰川,覆盖面积35 520±1948 km〜(2),海拔范围为2260至8600m。区域冰川的中位海拔从4150m(帕米尔·阿来)到近5400m(喀喇昆仑)不等,这在很大程度上是由于温度和降水的差异。冰川上碎片覆盖面积3587±662 km〜(2),即冰川总面积的10%。较大的冰川在碎屑覆盖的区域中占有较高的份额(高达20%),这使其成为后续应用中要考虑的重要因素(https://doi.org/10.1594/PANGAEA.894707)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号