首页> 外文期刊>Earth System Science Data >Present-day surface deformation of the Alpine region inferred from geodetic techniques
【24h】

Present-day surface deformation of the Alpine region inferred from geodetic techniques

机译:大地测量技术推断的当今高山地区的表面变形

获取原文
           

摘要

We provide a present-day surface-kinematics model for the Alpine region and surroundings based on a high-level data analysis of about 300 geodetic stations continuously operating over more than 12?years. This model includes a deformation model, a continuous surface-kinematic (velocity) field, and a strain field consistently assessed for the entire Alpine mountain belt. Special care is given to the use of the newest Global Navigation Satellite Systems (GNSS) processing standards to determine high-precision 3-D station coordinates. The coordinate solution refers to the reference frame IGb08, epoch 2010.0. The mean precision of the station positions at the reference epoch is ±1.1 mm in N and E and ±2.3 mm in height. The mean precision of the station velocities is ±0.2 mm?a sup?1/sup in N and E and ±0.4 mm?a sup?1/sup in height. The deformation model is derived from the point-wise station velocities using a geodetic least-squares collocation (LSC) approach with empirically determined covariance functions. According to our results, no significant horizontal deformation is detected in the Western Alps, while across the Southern and Eastern Alps the deformation vectors describe a progressive eastward rotation towards Pannonia. This kinematic pattern also makes evident an increasing magnitude of the deformation from 0.1?mm?a sup?1/sup in the western part of Switzerland up to about 1.3?mm?a sup?1/sup in the Austrian Alps. The largest shortening is observed along the southern front of the Eastern Alps (in the northern area of the Venetian-Friuli Basin) and in the northern part of the Apennine Peninsula, where rates reach 2 and 3?mm?a sup?1/sup , respectively. The average accuracy of the horizontal deformation model is ±0.2 mm?a sup?1/sup . Regarding the vertical kinematics, our results clearly show an ongoing average uplift rate of 1.8?mm?a sup?1/sup of the entire mountain chain, with the exception of the southern part of the Western Alps, where no significant uplift (less than 0.5?mm?a sup?1/sup ) is detected. The fastest uplift rates (more than 2?mm?a sup?1/sup ) occur in the central area of the Western Alps, in the Swiss Alps, and in the Southern Alps in the boundary region between Switzerland, Austria, and Italy. The general uplift observed across the Alpine mountain chain decreases towards the outer regions to stable values between 0.0 and 0.5?mm?a sup?1/sup and, in some cases, to subsidence like in the Liguro-Proven?al and Vienna basins, where vertical rates of ?0.8 and ?0.3 mm?a sup?1/sup are observed, respectively. In the surrounding region, three regional subsidence regimes are identified: the Rh?ne-Bresse Graben with ?0.8 mm?a sup?1/sup , the Rhine Graben with ?1.3 mm?a sup?1/sup , and the Venetian-Friuli Basin with ?1.5 mm?a sup?1/sup . The estimated uncertainty of our vertical motion model across the Alpine mountain belt is about ±0.3 mm?a sup?1/sup . The strain field inferred from the deformation model shows two main contrasting strain regimes: (i)?shortening across the south-eastern front of the Alps and the northern part of the Dinarides and (ii)?extension in the Apennines. The pattern of the principal strain axes indicates that the compression directions are more or less perpendicular to the thrust belt fronts, reaching maximum values of 20 × 10 - 9 a sup?1/sup in the Venetian-Friuli and Po basins. Across the Alpine mountain belt, we observe a slight dilatation regime in the Western Alps, which smoothly changes to a contraction regime in western Austria and southern Germany, reaching maximum shortening values of 6 × 10 - 9 a sup?1/sup in north-eastern Austria.
机译:我们基于对300个连续运行超过12年的大地测量站的高级数据分析,为当今的阿尔卑斯地区和周围地区提供了一种表面运动学模型。该模型包括一个变形模型,一个连续的表面运动(速度)场和一个对整个高山山区进行一致评估的应变场。要特别注意使用最新的全球导航卫星系统(GNSS)处理标准来确定高精度3-D站坐标。坐标解参考参考帧IGb08,时期2010.0。基准位置的测站位置的平均精度在N和E上为±1.1毫米,在高度上为±2.3毫米。测站速度的平均精度在N和E上为±0.2 mm?a ?1 ,在高度上为±0.4 mm?a ?1 。变形模型是使用大地最小二乘搭配(LSC)方法根据经验确定的协方差函数从点式测站速度得出的。根据我们的结果,在西阿尔卑斯山没有发现明显的水平变形,而在南阿尔卑斯山和东阿尔卑斯山的变形矢量描述了朝着Pannonia的逐渐向东旋转。这种运动学模式也使变形量从瑞士西部的0.1?mm?a ?1 上升到大约1.3?mm?a ?1 。在奥地利阿尔卑斯山。最大的缩短是在东阿尔卑斯山的南部锋面(在威尼斯-弗留利盆地的北部地区)和亚平宁半岛的北部,其速率达到2和3?mm?a ?1 。水平变形模型的平均精度为±0.2 mm?a ?1 。关于垂直运动学,我们的结果清楚地表明,整个山脉的平均平均上升速度为1.8?mm?a ?1 ,但西阿尔卑斯山的南部除外,那里没有明显的上升趋势。检测到隆起(小于0.5?mm?a ?1 )。上升最快的速度(大于2?mm?a ?1 )发生在西阿尔卑斯山的中部地区,瑞士的阿尔卑斯山以及瑞士和奥地利之间的边界地区的南阿尔卑斯山和意大利。在整个高山山脉上观测到的总体隆升向外围区域减小,稳定在0.0至0.5?mm?a ?1 之间,在某些情况下,也像Liguro-Proven?al中那样沉降。维也纳盆地的垂直速率分别为0.8和0.3 mm?a ?1 。在周边地区,确定了三种区域沉降模式:Rh?ne-Bresse Graben的?0.8 mm?a ?1 ,Rhine Graben的?1.3 mm?a ?1 < / sup>以及直径为1.5 mm?a ?1 的威尼斯-弗留利盆地。我们横跨高山山脉的垂直运动模型的估计不确定性约为±0.3 mm?a ?1 。从变形模型推断出的应变场显示出两个主要的相反应变形式:(i)在阿尔卑斯山东南锋和Dinarides北部的短缩,以及(ii)在亚平宁山脉的伸长。主应变轴的模式表明,压缩方向或多或少垂直于逆冲带前缘,在威尼斯-弗留利和波依盆地的最大值达到20×10-9 a ?1 。在整个高山山脉上,我们在西阿尔卑斯山观察到轻微的扩张状态,在奥地利西部和德国南部平稳地转变为收缩状态,最大缩短值为6×10-9 a ?1 在奥地利东北部。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号