...
首页> 外文期刊>Egyptian Journal of Biological Pest Control >Biosynthesis and characterization of silver nanoparticles using Trichoderma longibrachiatum and their effect on phytopathogenic fungi
【24h】

Biosynthesis and characterization of silver nanoparticles using Trichoderma longibrachiatum and their effect on phytopathogenic fungi

机译:长木霉菌对银纳米颗粒的生物合成,表征及其对植物致病真菌的影响

获取原文
           

摘要

An efficient biosynthesis process for the rapid production of nanoparticles would enable the development of a “microbial nanotechnology” for mass-scale production. In the present research, biological silver nanoparticle was synthesized extracellularly by using the fungus, Trichoderma longibrachiatum, where the cell filtrate of the fungus was used as a reducing and stabilizing agent in the process of nanoparticle synthesis. Different physical parameters such as fungal biomass concentration (1, 5, 10, 15, and 20 g), temperature (25, 28, and 33 °C), incubation time (0–120 h), and agitation (shaken or not shaken) were investigated, in order to determine the optimal conditions for nanoparticle biosynthesis. The stability and antifungal properties of the synthesized silver nanoparticles (AgNPs) were also determined. Data revealed that a combination of 10 g fungal biomass, a reaction temperature of 28 °C, a 72-h incubation time, and without shaking were the optimum conditions for the synthesis of the silver nanoparticles. Visual observation of brown color is an indication of silver nanoparticle production. UV–vis spectroscopy showed maximum absorption at 385 nm with the optimum conditions. Transmission electron microscopy (TEM) revealed the formation of monodispersed spherical shape with a mean diameter of 10 nm. Fourier transformation infrared (FTIR) showed bands at1634.92 and 3269.31 cm−1. Dynamic light scattering (DLS) supported that the Z-average size was 24.43 and 0.420 PdI value. Zeta potential showed − 19.7 mV with a single peak. The AgNPs synthesized through this biosystem approach were relatively stable up to 2 months after synthesis. The use of AgNPs as antifungal led to significant reductions in the number of forming colonies for many plant pathogenic fungi, with efficiencies reaching up to 90% against Fusarium verticillioides, Fusarium moniliforme, Penicillium brevicompactum, Helminthosporium oryzae, and Pyricularia grisea. However, further research should be carried out in order to determine the toxic effect of AgNPs before mass production and use of agricultural applications.
机译:用于快速生产纳米颗粒的有效生物合成工艺将使大规模生产的“微生物纳米技术”得以发展。在本研究中,利用真菌木霉属木霉(Trichoderma longibrachiatum)在细胞外合成了生物银纳米粒子,其中真菌的细胞滤液在纳米粒子合成过程中用作还原剂和稳定剂。不同的物理参数,例如真菌生物质浓度(1、5、10、15和20 g),温度(25、28和33°C),孵育时间(0-120小时)和搅拌(摇动或不摇动)进行了研究,以确定纳米生物合成的最佳条件。还确定了合成银纳米颗粒(AgNPs)的稳定性和抗真菌性能。数据显示,结合10 g真菌生物质,反应温度28°C,72小时孵育时间且不摇动是合成银纳米颗粒的最佳条件。肉眼观察到棕色是银纳米颗粒产生的指示。紫外可见光谱显示在最佳条件下在385 nm处的最大吸收。透射电子显微镜(TEM)显示平均直径为10 nm的单分散球形形状的形成。傅立叶变换红外(FTIR)显示的波段为1634.92和3269.31 cm-1。动态光散射(DLS)支持Z平均尺寸为24.43和0.420 PdI值。 Zeta电位显示为-19.7 mV,具有一个峰。通过这种生物系统方法合成的AgNP在合成后的2个月内相对稳定。使用AgNPs作为抗真菌剂可显着减少许多植物病原性真菌的形成菌落数量,对黄萎病镰刀菌,镰刀镰刀菌,短小青霉,稻瘟病菌和稻瘟病菌的效率可达90%。但是,应进行进一步的研究以确定在大规模生产和使用农业应用之前AgNPs的毒性作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号