...
首页> 外文期刊>Ecology and Evolution >Genetic variation for tolerance to high temperatures in a population of Drosophila melanogaster
【24h】

Genetic variation for tolerance to high temperatures in a population of Drosophila melanogaster

机译:果蝇果蝇对高温耐受性的遗传变异

获取原文
   

获取外文期刊封面封底 >>

       

摘要

The range of thermal tolerance is one of the main factors influencing the geographic distribution of species. Climate change projections predict increases in average and extreme temperatures over the coming decades; hence, the ability of living beings to resist these changes will depend on physiological and adaptive responses. On an evolutionary scale, changes will occur as the result of selective pressures on individual heritable differences. In this work, we studied the genetic basis of tolerance to high temperatures in the fly Drosophila melanogaster and whether this species presents sufficient genetic variability to allow expansion of its upper thermo‐tolerance limit. To do so, we used adult flies derived from a natural population belonging to the Drosophila Genetic Reference Panel, for which genomic sequencing data are available. We characterized the phenotypic variation of the upper thermal limit in 34 lines by measuring knockdown temperature (i.e., critical thermal maximum [CTmax]) by exposing flies to a ramp of increasing temperature (0.25°C/min). Fourteen percent of the variation in CTmax is explained by the genetic variation across lines, without a significant sexual dimorphism. Through a genomewide association study, 12 single nucleotide polymorphisms associated with the CTmax were identified. In most of these SNPs, the less frequent allele increased the upper thermal limit suggesting that this population harbors raw genetic variation capable of expanding its heat tolerance. This potential upper thermal tolerance increase has implications under the global warming scenario. Past climatic records show a very low incidence of days above CTmax (10?days over 25?years); however, future climate scenarios predict 243?days with extreme high temperature above CTmax from 2045 to 2070. Thus, in the context of the future climate warming, rising temperatures might drive the evolution of heat tolerance in this population by increasing the frequency of the alleles associated with higher CTmax.
机译:热耐受范围是影响物种地理分布的主要因素之一。根据气候变化预测,未来几十年的平均和极端温度将上升;因此,生物抵抗这些变化的能力将取决于生理和适应性反应。从进化的角度来看,变化是由于个体遗传差异的选择性压力而产生的。在这项工作中,我们研究了果蝇果蝇对高温的耐受性的遗传基础,以及该物种是否具有足够的遗传变异性以允许其耐热上限的扩大。为此,我们使用了来自果蝇遗传参考小组的自然种群的成年果蝇,该果蝇可获得基因组测序数据。我们通过将果蝇暴露于温度上升(0.25°C / min)的斜坡上来测量击倒温度(即临界热最大值[CTmax]),从而表征了34条线中温度上限的表型变化。 CTmax变异的14%是由品系间的遗传变异解释的,没有明显的性二态性。通过全基因组关联研究,确定了与CTmax相关的12个单核苷酸多态性。在大多数这些SNP中,频率较低的等位基因增加了热上限,表明该种群具有能够扩展其耐热性的原始遗传变异。在全球变暖的情况下,潜在的较高的热容忍度增加具有影响。过去的气候记录显示,高于CTmax的天数(25年中的10天)的发生率非常低。但是,未来的气候情景预测,从2045年到2070年,最高气温将超过CTmax,这将是243天。因此,在未来的气候变暖的背景下,温度升高可能会通过增加等位基因的频率来驱动该人群耐热性的演变。与最高CTmax相关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号