首页> 外文期刊>Ecocycles >How mushrooms break through the evolutionary dead end?
【24h】

How mushrooms break through the evolutionary dead end?

机译:蘑菇如何突破进化的死角?

获取原文
       

摘要

Genes, genetics, genomics, and the roles of mushrooms and toadstools in the global carbon cycle are reviewed here. Fungi – similar to wood eating insects – are the main decomposers (a type of consumers or heterotrophs), and consequently recyclers of biomass produced by photosynthetic organisms ( i.e., the producers or autotrophs). Photosynthesis is driven by the solar energy day by day (of Photoautotrophs ) ( i.e., primary producers), and night by night (of Chemoautotroph bacteria) for billions of years. Only photosynthetic organisms can produce organic materials in the Earth to supply food and feed to the Heterotrophs (animals, including Human), and Saprotrophs ( i.e., decomposers) including fungi and bacteria. The crucial excess oxygen the photosynthesis produces oxygenates and maintains the life in the Earth. Mushrooms were found to have 100-1000 times smaller genomes than plants or animals, however, enormous genome expansions of Armillaria s ( Eng./Hung.: honey mushrooms / tuskógombák) have indicated recently that fungi tend to break out from their closed evolutionary dead end. Comparative genome analyses of Polyporales mushrooms have recently identified an ongoing transitioning evolutionary stage from white-rot (WR) towards brown-rot (BR) life style with loss of genes encoding enzymes to decay cell wall components of plants and trees including cellulose, hemicellulases, lignin (the three together also called lignocelluloses), and pectin. In the case of lignin, ligninase enzyme genes were evolved only in fungi to decay lignin of plants. A tripartite symbiosis among achlorophyllous ( i.e., parasitic) mycoheterotrophic plants ? mycorrhizal fungi ? and autotrophic green plants were re-discovered recently. Here we review all of these new achievements in the research of Dicaria true fungi ( Eumycota ) of both Ascomycota ( Eng./Hung.: Sac fungi / T?ml?sgombák) and Basidiomycota ( Eng./Hung.: Club fungi / Bazidiumosgombák) with special emphasis on genes, genetics, genomics and evolutionary relationships.
机译:本文回顾了基因,遗传学,基因组学以及蘑菇和毒菌在全球碳循环中的作用。真菌(类似于食木昆虫)是主要分解物(一种消费者或异养生物),因此是光合生物(即生产者或自养生物)产生的生物质的再循环者。光合作用是由数十亿年的日日(光自养生物)(即初级生产者)和黑夜(化肥自养细菌的太阳能)驱动的。只有光合作用生物才能在地球上产生有机物质,以向异养动物(包括人在内的动物)和腐菌(即分解菌)(包括真菌和细菌)提供食物和饲料。光合作用的关键过量氧气会产生含氧化合物,并维持地球上的生命。人们发现蘑菇的基因组比植物或动物小100-1000倍,然而,蜜环菌(Amillaria s)的巨大基因组扩展(英文:Hung。结束。多孔菌蘑菇的比较基因组分析最近确定了从白腐(WR)到棕腐(BR)生活方式的一个持续过渡的进化阶段,其丢失编码酶的基因来降解植物和树木的细胞壁成分,包括纤维素,半纤维素酶木质素(三者又称木质纤维素)和果胶。在木质素的情况下,仅在真菌中进化木质素酶基因以降解植物的木质素。在叶绿素(寄生)真菌异养植物中的三方共生?菌根真菌?最近又重新发现了自养绿色植物。在这里,我们将对子囊菌(Eng./Hung .:囊菌/ T?ml?sgombák)和担子菌(Basidiomycota)(Eng./Hung .:俱乐部真菌/Bazidiumosgombák)的Dicaria真真菌(Eumycota)进行研究,回顾所有这些新成就。 ),特别强调基因,遗传学,基因组学和进化关系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号