首页> 外文期刊>Italian Journal of Agronomy >Ozone Flux Measurement and Modelling on Leaf/Shoot and Canopy Scale
【24h】

Ozone Flux Measurement and Modelling on Leaf/Shoot and Canopy Scale

机译:叶/芽和冠层尺度上的臭氧通量测量和建模

获取原文
       

摘要

The quantitative study of the ozone effects on agricultural and forest vegetation requires the knowledge of the pollutant dose absorbed by plants via leaf stomata, i.e. the stomatal flux. Nevertheless, the toxicologically effective dose can differ from the stomatal flux because a pool of scavenging and detoxification processes reduce the amount of pollutant responsible of the expression of the harmful effects. The measurement of the stomatal flux is not immediate and the quantification of the effective dose is still troublesome. The paper examines the conceptual aspects of ozone flux measurement and modelling in agricultural and ecological research. The ozone flux paradigm is conceptualized into a toxicological frame and faced at two different scales: leaf/shoot and canopy scales. Leaf and shoot scale flux measurements require gas-exchange enclosure techniques, while canopy scale flux measurements need a micrometeorological approach including techniques such as eddy covariance and the aerodynamical gradient. At both scales, not all the measured ozone flux is stomatal flux. In fact, a not negligible amount of ozone is destroyed on external plant surfaces, like leaf cuticles, or by gas phase reaction with biogenic volatile compounds. The stomatal portion of flux can be calculated from concurrent measurements of water vapour fluxes at both scales. Canopy level flux measurements require very fast sensors and the fulfilment of many conditions to ensure that the measurements made above the canopy really reflect the canopy fluxes (constant flux hypothesis). Again, adjustments are necessary in order to correct for air density fluctuations and sensor-surface alignment break. As far as regards flux modelling, at leaf level the stomatal flux is simply obtained by multiplying the ozone concentration on the leaf with the stomatal conductance predicted by means of physiological models fed by meteorological parameter. At canopy level the stomatal flux is calculated by SVAT models often based on the energy balance of the soil-vegetation-atmosphere system and on the big-leaf concept. This latter assumes the canopy as equivalent to a single leaf having a leaf area equal to the total area of all the plant’s leaves and lying at a certain height above the ground. The complexity of SVAT models ranges from one-dimensional to three-dimensional models. The most used are one-dimensional models in single-layer, dual-source or multi-layer version. The main uncertainties in flux modelling are currently associated to the estimation of the non-stomatal flux component and to the up-scaling process from leaf to canopy and stand level. For the latter a separate representation of sunlit and shaded leaves is recommended.
机译:臭氧对农业和森林植被的影响的定量研究需要了解植物通过叶片气孔吸收的污染物剂量,即气孔通量。但是,毒理学有效剂量可能不同于气孔通量,因为清除和排毒过程会减少造成有害作用表达的污染物数量。气孔通量的测量不是立即的,有效剂量的定量仍然很麻烦。本文考察了农业和生态研究中臭氧通量测量和建模的概念方面。臭氧通量范式被概念化为毒理学框架,并面临两种不同的尺度:叶片/枝条和冠层尺度。叶片和枝条尺度通量测量需要气体交换围护技术,而冠层尺度通量测量需要微气象学方法,包括诸如涡度协方差和空气动力学梯度之类的技术。在这两个尺度上,并非所有测得的臭氧通量都是气孔通量。实际上,在植物的外部表面(如叶片的表皮)或通过与生物挥发性化合物的气相反应,破坏了不可忽略的臭氧量。通量的气孔部分可以通过同时测量两个尺度的水蒸气通量来计算。冠层通量测量需要非常快速的传感器并满足许多条件,以确保在冠层上方进行的测量真正反映冠层通量(恒定通量假设)。同样,必须进行调整以校正空气密度波动和传感器表面对齐中断。就通量建模而言,在叶片水平上,只需将叶片上的臭氧浓度乘以借助气象参数提供的生理模型预测的气孔导度,即可获得气孔通量。在冠层水平上,气孔通量通常通过SVAT模型来计算,该模型通常基于土壤-植被-大气系统的能量平衡和大叶概念。后者假设树冠相当于一片叶子,其叶子面积等于所有植物叶子的总面积,并且位于地面上方一定高度。 SVAT模型的复杂性从一维模型到三维模型不等。最常用的是单层,双源或多层版本的一维模型。通量建模中的主要不确定性目前与非气孔通量分量的估计以及从叶到冠层和林分等级的放大过程有关。对于后者,建议单独表示阳光照射和阴影遮盖的叶子。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号