首页> 外文期刊>International Journal of Physical Sciences >A distributed transmission line model of cloud-to-ground lightning return stroke: Model verification, return stroke velocity, unmeasured currents and radiated fields
【24h】

A distributed transmission line model of cloud-to-ground lightning return stroke: Model verification, return stroke velocity, unmeasured currents and radiated fields

机译:云地雷回程的分布式传输线模型:模型验证,回程速度,未测电流和辐射场

获取原文
       

摘要

Among the various models for lightning return strokes (LRS) that exist, the lossy distributed transmission line (DLCR) model, it is shown herein, is a dependable, comprehensive and accurate model. The model contains inductance (L), capacitance (C), and the heat-loss resistance (R). Recently, many alternative models have been proposed, and the adequacy of the DLCR model (DLCRM) has been questioned because of some shortcomings in the previously reported DLCRM simulation results. This paper corrects some of these shortcomings, such as correct representation and computation of the LRS current pulse wavefront, and the special nature of the attachment point at the earth end. In this paper where the DLCRM model proposed is a self-consistent model, within the assumptions stated and justified, it is shown that the LRS velocity predicted by the DLCRM is about fifty to seventy percent less than the velocity of light (for example, c/3). The velocity determined from the DLCRM presented here agrees with the measured LRS velocity, and captures also the drop in velocity as the LRS moves away from the segments away from the ground. When considering both the physical principles and observations of the earth flash lightning return stroke (LRS), the DLCRM yields results that are consistent with lightning measurements. The DLCRM may be used to obtain important engineering parameters which are not easily measured; one such example is the very high rate of rise of currents on a submicrosecond timescale (for example, 98 kA/μs), whereas the microsecond rate of rise of current may be a tenth of the submicrosecond values. Relating the computed electric and magnetic fields radiated by the LRS currents obtained from the DLCRM shows the correlation between the LRS current waveforms and the electromagnetic field waveforms at different distances from the LRS channel. Moreover, for unbranched first and subsequent return strokes, the model’s electrical parameters such as inductance (L), capacitance (C) and resistance (R) values may be calculated from basic principles, with the assumptions made clearly defined and justified. Among the various models for lightning return strokes, the lossy transmission line model (the DLCRM) remains the most dependable when considering both the physical principles and measurements that provide a consistent and self-contained justification for the LCR model.
机译:在本文中示出的用于雷电回击(LRS)的各种模型中,有损分布式传输线(DLCR)模型是可靠,全面和准确的模型。该模型包含电感(L),电容(C)和热损耗电阻(R)。近来,已经提出了许多替代模型,并且由于先前报道的DLCRM仿真结果中的某些缺点,对DLCR模型(DLCRM)的适当性提出了质疑。本文纠正了其中的一些缺陷,例如LRS电流脉冲波前的正确表示和计算,以及接地端的附着点的特殊性质。在本文提出的DLCRM模型是一个自洽模型的情况下,在陈述并证明的假设下,研究表明DLCRM预测的LRS速度比光速低约50%至70%(例如,c / 3)。从此处显示的DLCRM确定的速度与测得的LRS速度一致,并且还捕获LRS远离远离地面的线段时的速度下降。当同时考虑物理原理和对地球闪雷回程(LRS)的观察时,DLCRM得出的结果与雷电测量结果一致。 DLCRM可用于获取不容易测量的重要工程参数。一个这样的例子是在亚微秒的时间尺度上电流的非常高的上升速率(例如98kA /μs),而微秒的电流上升速率可以是亚微秒值的十分之一。对从DLCRM获得的LRS电流辐射计算出的电场和磁场进行相关分析,可以显示LRS电流波形与距LRS通道不同距离的电磁场波形之间的相关性。而且,对于无分支的第一和随后的回程,可以根据基本原理计算模型的电参数,例如电感(L),电容(C)和电阻(R)值,并清楚地定义和证明假设。在考虑雷击回程的各种模型中,有损传输线模型(DLCRM)在考虑物理原理和测量结果(为LCR模型提供一致且独立的证明)时仍是最可靠的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号