首页> 外文期刊>International Journal of Innovative Research in Science, Engineering and Technology >NUMERICAL SIMULATION OF COMBUSTION IN A SINGLE ELEMENT H2-O2 CRYOGENIC ENGINE
【24h】

NUMERICAL SIMULATION OF COMBUSTION IN A SINGLE ELEMENT H2-O2 CRYOGENIC ENGINE

机译:单元素H2-O2低温发动机燃烧的数值模拟

获取原文
           

摘要

The liquid propellant rocket engine combustion chamber represents one of the most difficult engineering flow systems in operation. The ignition of the propellants injected into a rocket combustion chamber and the subsequent propagation and anchoring of the flame is an important design consideration for all types of rockets. Reliable ignition has to be guaranteed and the initiated turbulent diffusion flame has to stabilize without over pressure or blow out. The control of ignition in a rocket engine is a critical problem for combustion chamber design. Delayed ignition may lead to high unsteady chamber pressure that can damage the engine (strong ignition) whereas early ignition may not sustain to reach steady state. Predictivity of the models and numerical tools to analyse the ignition transient has still limitations. In H2/O2 rocket combustors, the injected propellants are ignited by a stream of hot gas originating from the igniter device. The hot gas has to mix with the injected propellants to initiate combustion in a situation which is characterized by strong spatial inhomogeneties. This paper presents the numerical study of ignition characteristics of H2 & O2 propellant combination in cryogenic combustor. The main objective is to get an insight into the main processes involved in the ignition of cryogenic engines. The pressure, temperature, velocity profile and propellant mass fraction variation along the combustion chamber is addressed. The characteristics of diffusion flame, shear layer combustion, recirculation zone and flame propagation are also addressed. The reaction mechanism is studied using Eddy Dissipation Model/Finite Rate Chemistry. Numerical simulation results were compared with the experimental data.
机译:液体推进剂火箭发动机燃烧室是运行中最困难的工程流系统之一。对于所有类型的火箭而言,注入火箭燃烧室的推进剂的点火以及随后火焰的传播和锚固都是重要的设计考虑因素。必须确保可靠的点火,并且所引发的湍流扩散火焰必须稳定,而不会产生超压或吹灭。火箭发动机的点火控制是燃烧室设计的关键问题。延迟点火可能会导致较高的不稳定室内压力,从而可能损坏发动机(强烈点火),而提前点火可能无法维持稳定状态。用于分析点火瞬变的模型和数值工具的可预测性仍然存在局限性。在H2 / O2火箭燃烧器中,喷射的推进剂被源自点火器装置的热气流点燃。在以强烈的空间不均匀性为特征的情况下,热气必须与注入的推进剂混合才能开始燃烧。本文介绍了低温燃烧室中H2和O2推进剂组合的着火特性的数值研究。主要目的是深入了解低温发动机点火的主要过程。解决了沿燃烧室的压力,温度,速度分布和推进剂质量分数变化的问题。还讨论了扩散火焰,剪切层燃烧,再循环区和火焰传播的特征。使用涡流耗散模型/有限速率化学研究了反应机理。数值模拟结果与实验数据进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号