首页> 外文期刊>International Journal of Materials Lifetime >Functional Influence Evaluation of Copper Addition and Pb-Sb-Cu Alloy Melting Temperature on the Alloy Electrical Conductivity
【24h】

Functional Influence Evaluation of Copper Addition and Pb-Sb-Cu Alloy Melting Temperature on the Alloy Electrical Conductivity

机译:添加铜和Pb-Sb-Cu合金熔融温度对合金电导率的功能影响评价

获取原文
获取外文期刊封面目录资料

摘要

Studies were carried out to evaluate the functional influence of copper addition and Pb-Sb-Cu alloy melting temperature on the alloy electrical conductivity. The alloy was cast by pouring a stirred mixture of heated Pb-Sb alloy and powdered copper into a sand mould and then furnace cooled. Results of electrical test carried out indicate that the electrical conductivity of the Pb-Sb-Cu alloy increases with increase in the melting temperature of the Pb-Sb-Cu alloy. This invariably implied decrease in the electrical resistance and resistivity of the alloy with increase in the melting temperature, in accordance with findings that the minimum additional energy (energy gap) which a bonding electron must acquire to conduct electricity, decreases with decrease in the electrical resistance, resistivity and with increasing temperature. Increased copper addition (5- 45g) to the base alloy (Pb-Sb) was discovered to increase correspondingly the electrical conductivity. This is attributed to the increased melting temperature of the alloy as a result of increased impurity atoms in the alloys in the form of copper. In order to complement the experimental result, a model was derived and used as a tool for evaluating the functional influence of the two process parameters; copper input and alloy melting temperature on the electrical conductivity of Pb-Sb-Cu alloy. The derived model is expressed as; α = 0.0074 ?2 - 0.0031? + 0.0325 T2 – 26.9945 T + 5693.357 The validity of the two-factorial model was found to be rooted on the expression 1.756 x 10-4 α - 1= 1.3 x 10-6 ?2 + 5.71 x 10-6 T2 – 5.44 x 10-7? – 4.74 x10-3 T where both sides of the expression are correspondingly approximately equal. Statistical analysis of the derived model-predicted, regression model-predicted and experimental results for each value of copper mass-input and alloy melting temperature considered shows standard errors of 3.0470, 0.0002 & 4.3231% and 2.7140, 0.0004 & 2.2943% respectively. Furthermore, electrical conductivity per unit copper mass-input as obtained from derived model-predicted, regression model-predicted and experimental results are 0.7862, 0.7025 and 0.835 (Ωm)-1 g-1 respectively. Similarly, electrical conductivity per unit rise in the alloy melting temperature as obtained from derived model-predicted, regression model-predicted and experimental results are 2.0966, 2.2086 and 2.2267 (Ωm)-1 / 0C respectively. Deviational analysis indicates that the maximum deviation of derived model-predicted electrical conductivity from experimental results is less than 4%; implying over 96% viable model operational confidence level.
机译:进行研究以评估添加铜和Pb-Sb-Cu合金熔融温度对合金电导率的功能影响。通过将加热的Pb-Sb合金和铜粉的搅拌混合物倒入砂模中,然后熔炉冷却,来铸造合金。进行的电学测试结果表明,Pb-Sb-Cu合金的电导率随着Pb-Sb-Cu合金的熔化温度的升高而增加。根据发现,键合电子必须获得的最小额外能量(能隙)随电阻的降低而降低,这必然暗示着合金的电阻和电阻率随熔化温度的升高而降低。 ,电阻率和温度升高。发现向基础合金(Pb-Sb)中增加的铜添加量(5- 45g)相应地增加了电导率。这归因于由于铜形式的合金中杂质原子增加的结果,合金的熔化温度增加。为了补充实验结果,推导了一个模型并将其用作评估两个工艺参数的功能影响的工具。铜输入和合金熔化温度对Pb-Sb-Cu合金电导率的影响。导出的模型表示为: α= 0.0074?2-0.0031? + 0.0325 T2 – 26.9945 T + 5693.357发现两因素模型的有效性源于表达式1.756 x 10-4α-1 = 1.3 x 10-6?2 + 5.71 x 10-6 T2 – 5.44 x 10-7? – 4.74 x10-3 T,其中表达式的两侧相应地近似相等。对所考虑的铜质量输入和合金熔化温度的每个值的派生模型预测,回归模型预测和实验结果的统计分析显示标准误差分别为3.0470、0.0002和4.3231%和2.7140、0.0004和2.2943%。此外,从推导模型预测,回归模型预测和实验结果获得的每单位铜质量输入的电导率分别为0.7862、0.7025和0.835(Ωm)-1 g-1。类似地,从衍生模型预测,回归模型预测和实验结果获得的合金熔化温度中每单位电导率的升高分别为2.0966、2.2086和2.2267(Ωm)-1 / 0C。偏差分析表明,导出的模型预测的电导率与实验结果的最大偏差小于4%;意味着超过96%的可行模型操作置信度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号