首页> 外文期刊>International Journal of Image, Graphics and Signal Processing >Automatic Fungal Disease Detection based on Wavelet Feature Extraction and PCA Analysis in Commercial Crops
【24h】

Automatic Fungal Disease Detection based on Wavelet Feature Extraction and PCA Analysis in Commercial Crops

机译:基于小波特征提取和PCA分析的农作物真菌病害自动检测

获取原文
获取外文期刊封面目录资料

摘要

This paper describes automatic detection and classification of visual symptoms affected by fungal disease. Algorithms are developed to acquire and process color images of fungal disease affected on commercial crops like chili, cotton and sugarcane. The developed algorithms are used to preprocess, segment, extract and reduce features from fungal affected parts of a crop. The feature extraction is done with discrete wavelet transform (DWT) and features are further reduced by using Principal component analysis (PCA). Reduced features are then used as inputs to classifiers and tests are performed to classify image samples. We have used statistical based Mahalanobis distance and Probabilistic neural network (PNN) classifiers. The average classification accuracies using Mahalanobis distance classifier are 83.17% and using PNN classifier are 86.48%. Reference [1]J.D. Pujari, Rajesh.Yakkundimath, A.S.Byadgi (2013), “Grading and Classification of anthracnose fungal disease in fruits”, International Journal of Advanced Science and Technology, Vol.52. [2]Arman Arefi and Asad Modarres Motlagh (2013) , “Development of an expert system based on wavelet transform and artificial neural networks for the ripe tomato harvesting robot”, AJCS 7(5):699-705, ISSN:1835-2707. [3]Heena Patel and Saurabh Dave (2012), “An application of Radon and Wavelet Transforms for Image Feature Extraction”, International Journal of Electronics and Communication Engineering, Volume 1,Issue 2, Pages 1-8. [4]Namita Aggarwal, R. K. Agrawal (2012), “First and Second Order Statistics Features for Classification of Magnetic Resonance Brain Images”, Journal of Signal and Information Processing, 2012, 3, 146-153 doi:10.4236/jsip.2012.32019 Published Online May 2012 (http://www.SciRP.org/journal/jsip). [5]A. Phinyomark, A. Nuidod, P. Phukpattaranont and C. Limsakul (2012), “Feature Extraction and Reduction of Wavelet Transform Coefficients for EMG Pattern Classification”, Electronics and Electrical Engineering. – Kaunas: Technological, No. 6(122). – P. 27–32. [6]Y. Zhang* and L. Wu (2012), “An MR Brain images classifier via principal component analysis and kernel support vector machine”, Progress In Electromagnetics Research, Vol. 130, 369-388. [7]Jayamala K. Patil, Raj Kumar (2011), “Advances in image processing in image processing for detection of plant diseases”, Journal of Advanced Bioinformatics Applications and Research Volume 2, Issue 2, Pages 135-141. [8]Lili N.A, F. Khalid, N.M. Borhan (2011), “Classification of Herbs Plant Diseases via Hierarchical Dynamic Artificial Neural Network after Image Removal using Kernel Regression Framework”, International Journal on Computer Science and Engineering Vol. 3 No.1. [9]D. Moshou, C. Bravo , R. Oberti , J.S. West , H. Ramon , S. Vougioukas , D. Bochtis (2011), “Intelligent multi-sensor system for the detection and treatment of fungal diseases in arable crops”, Biosystems Engineering (1 0 8) Pages 3 1 1 -3 2 1. [10]D S Guru, P B Mallikarjuna, S Manjunath (2011), “Segmentation and Classification of Tobacco Seedling Diseases”, COMPUTE '11 Proceedings of the Fourth Annual ACM Bangalore Conference. [11]Basvaraj .S. Anami, J.D.Pujari and Rajesh.Yakkundimath (2011), “Identification and Classification of Normal and Affected Agriculture/horticulture Produce Based on Combined Color and Texture Feature Extraction”, International Journal of Computer Applications in Engineering Sciences, Vol 1, Issue 3. [12]H. Al-Hiary, S. Bani-Ahmad, M. Reyalat, M. Braik and ALRahamneh (2011), “Fast and Accurate Detection and Classification of Plant Diseases”, International Journal of Computer Applications, Volume 17– No.1. [13]Miroslaw Miciak (2010), “Radon Transformation and Principal Component Analysis Method Applied in Postal address recognition task”, International Journal of Computer Science and Applications, Vol. 7 No. 3, pp. 33 – 44. [14]E.-S. A. Dahshan, T. Hosny and A.-B. M. Salem (2010), “A Hy- brid Technique for Automatic MRI Brain Images Classification,” Digital Signal Processing, Vol. 20, No. 2, pp. 433-441. [15]A. Camargo, J.S. Smith (2009), “Image pattern classification for the identification of disease causing agents in plants”, Computers and Electronics in Agriculture (66) Pages 121–125. [16]Qing Yao, Zexin Guan, Yingfeng Zhou, Jian Tang, Yang Hu and Baojun Yang (2009), “Application of support vector machine for detecting rice diseases using shape and color texture features”, International Conference on Engineering Computation. [17]Mehdi Lotfi, Ali Solimani, Aras Dargazany, Hooman Afzal, Mojtaba Bandarabadi (2009), “Combining Wavelet Transforms and Neural Networks for Image Classification”, 41st Southeastern Symposium on System Theory University of Tennessee Space Institute Tullahoma, TN, USA, March 15-17. [18]Geng Ying, Li Miao, Yuan Yuan and Hu Zelin (2008), “A Study on the Method of Image Pre-Processing for Recognition of Crop Diseases”, International Conference on Advanced Computer Control. [19]Kuo-Yi Huang (2007
机译:本文介绍了受真菌病影响的视觉症状的自动检测和分类。开发了算法来获取和处理受商业作物(例如辣椒,棉花和甘蔗)影响的真菌病的彩色图像。所开发的算法用于预处理,分割,提取和减少农作物受到真菌影响的部分的特征。使用离散小波变换(DWT)完成特征提取,并通过使用主成分分析(PCA)进一步减少特征。然后,将简化后的特征用作分类器的输入,并执行测试以对图像样本进行分类。我们使用了基于统计的马氏距离和概率神经网络(PNN)分类器。使用Mahalanobis距离分类器的平均分类精度为83.17%,使用PNN分类器的平均分类精度为86.48%。参考文献[1] Pujari,Rajesh.Yakkundimath,A.S.Byadgi(2013),“水果中炭疽病真菌病的分级和分类”,国际先进科学技术杂志,第52卷。 [2] Arman Arefi和Asad Modarres Motlagh(2013),“基于小波变换和人工神经网络的成熟番茄收获机器人专家系统的开发”,AJCS 7(5):699-705,ISSN:1835-2707 。 [3] Heena Patel和Saurabh Dave(2012),“ Rad子和小波变换在图像特征提取中的应用”,国际电子与通信工程杂志,第1卷,第2期,第1-8页。 [4] Namita Aggarwal,RK Agrawal(2012),“磁共振脑图像分类的一阶和二阶统计特征”,信号与信息处理学报,2012,3,146-153 doi:10.4236 / jsip.2012.32019已发布在线2012年5月(http://www.SciRP.org/journal/jsip)。 [5] A。 Phinyomark,A。Nuidod,P。Phukpattaranont和C. Limsakul(2012),“用于EMG模式分类的小波变换系数的特征提取和减少”,电子和电气工程。 –考纳斯:技术,第6(122)号。 –第27–32页。 [6]是。 Zhang *和L. Wu(2012),“通过主成分分析和核支持向量机的MR脑图像分类器”,《电磁学研究进展》,第1卷。 130,369-388。 [7] Jayamala K. Patil,Raj Kumar(2011),“用于检测植物病害的图像处理中图像处理的进展”,《高级生物信息学应用与研究》第二卷,第2期,第135-141页。 [8] Lili N.A,F。Khalid,N.M。Borhan(2011),“使用核回归框架在图像去除后通过分层动态人工神经网络对草药植物病害进行分类”,《国际计算机科学与工程学报》,第1卷,第1期。 3号1。 [9] D。 Moshou,C.Bravo,R.Oberti,J.S。 West,H。Ramon,S。Vougioukas,D。Bochtis(2011),“用于检测和处理可耕作物真菌病害的智能多传感器系统”,生物系统工程(1 0 8)第3 1 1 -3 2页1. [10] DS Guru,PB Mallikarjuna,S Manjunath(2011),“烟草苗病的分类和分类”,第四届ACM班加罗尔年度会议的COMPUTE '11会议记录。 [11] Basvaraj。 Anami,JDPujari和Rajesh.Yakkundimath(2011),“基于组合的颜色和纹理特征提取对正常和受影响的农业/园艺产品进行识别和分类”,《国际工程应用计算机科学杂志》,第1卷,第3期。 12] H。 Al-Hiary,S。Bani-Ahmad,M。Reyalat,M。Braik和ALRahamneh(2011),“植物病害的快速,准确检测和分类”,《国际计算机应用杂志》,第17卷至第1期。 [13] Miroslaw Miciak(2010),“在邮政地址识别任务中应用的Ra变换和主成分分析方法”,《国际计算机科学与应用学报》,第1卷。 [14] E.-S. 7 No. 3,pp。33 – 44。 A. Dahshan,T。Hosny和A.-B. M. Salem(2010),“一种自动MRI脑图像自动分类的混合技术”,《数字信号处理》,第1卷。 20,第2号,第433-441页。 [15] A。卡马戈(J.S.) Smith(2009),“用于识别植物中致病因子的图像模式分类”,农业计算机和电子技术(66)第121–125页。 [16]姚庆,关泽新,周颖峰,唐健,胡扬和杨宝军(2009),“支持向量机在利用形状和颜色纹理特征检测水稻疾病中的应用”,国际工程计算会议。 [17] Mehdi Lotfi,Ali Solimani,Aras Dargazany,Hooman Afzal,Mojtaba Bandarabadi(2009),“结合小波变换和神经网络进行图像分类”,第41届东南大学系统理论研讨会,田纳西大学空间学院,美国田纳西州,塔拉霍马, 3月15日至17日。 [18]耿颖,李M,袁媛和胡泽林(2008),“用于作物病害识别的图像预处理方法研究”,国际先进计算机控制会议。 [19]黄国宜(2007

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号