...
首页> 外文期刊>International Journal of Electrochemical Science >The Study of Supercapacitive Stability of MnO2/MWCNT Nanocomposite Electrodes by Fast Fourier Transformation Continues Cyclic Voltammetry
【24h】

The Study of Supercapacitive Stability of MnO2/MWCNT Nanocomposite Electrodes by Fast Fourier Transformation Continues Cyclic Voltammetry

机译:快速傅里叶变换连续循环伏安法研究MnO 2 / MWCNT纳米复合电极的超电容稳定性

获取原文

摘要

In this work, the nanostructured MnO2 was uniformly coated on the multi-walled carbon nanotube(MWCNT) by a sonochemical method, and the effect of MWCNT amount on the supercapacitiveperformance of the nanocomposites were investigated. The structure and morphology of thenanocomposites were characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA),transition electron microscopy (TEM) and scanning electron microscopy (SEM). Also, the specificcapacitances (SCs) of the MWCNT/MnO2 electrodes were studied by cyclic voltammetry (CV). Theresult shows that the loading the nanocomposite with of MnO2 was 65 wt. %, the electrode has a high-1 -1 SC of 394 F g (at scan rate of 2 mV s in a 0.5 M Na2SO4) indicating a better performance than that-1 -1 of pristine MnO2 electrodes (289 F g at scan rate of 2 mV s ). Fast Fourier transformation continuouscyclic voltammetry (FFTCCV) technique was used to study stability and separation of charge anddischarge curves of the nanocomposite electrodes, over a large number of cycles (at scan rates 200 mV-1 s ). The results indicated SC that the capacitance of the composite electrode decreases only 3.2% ofinitial capacitance, after 4000 cycles. Therefore, the prepared composite could be potential electrodematerials for supercapacitors.
机译:本文采用声化学方法将纳米结构的MnO2均匀地涂覆在多壁碳纳米管(MWCNT)上,研究了MWCNT的用量对纳米复合材料的超电容性能的影响。然后通过X射线衍射(XRD),热重分析(TGA),跃迁电子显微镜(TEM)和扫描电子显微镜(SEM)对纳米复合材料的结构和形貌进行了表征。另外,通过循环伏安法(CV)研究了MWCNT / MnO2电极的比电容(SCs)。结果表明,MnO 2纳米复合材料的负载量为65重量%。 %,该电极的高-1 -1 SC为394 F g(在0.5 M Na2SO4中的扫描速率为2 mV s时),其性能优于原始MnO2电极的-1 -1(扫描时为289 F g)速率为2 mV s)。快速傅里叶变换连续循环伏安法(FFTCCV)技术用于研究纳米复合电极在大量循环(扫描速率为200 mV-1 s)下的稳定性和充电和放电曲线的分离。结果表明,在4000次循环后,复合电极的电容仅降低初始电容的3.2%。因此,所制备的复合材料可以作为超级电容器的潜在电极材料。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号