首页> 外文期刊>International Journal of Clean Coal and Energy >Employment of Two-Stage Oxygen Feeding to Control Temperature in a Downdraft Entrained-Flow Coal Gasifier
【24h】

Employment of Two-Stage Oxygen Feeding to Control Temperature in a Downdraft Entrained-Flow Coal Gasifier

机译:采用两阶段供氧来控制向下气流气流床气化炉的温度

获取原文
           

摘要

The traditional practice of employing a two-stage coal-fed gasification process is to feed all of the oxygen to provide a vigorous amount of combustion in the first stage but only feed the coal without oxygen in the second stage to allow the endothermic gasification process to occur downstream of the second stage. One of the merits of this 2-stage practice is to keep the gasifier temperature low downstream from the 2nd stage. This helps to extend the life of refractory bricks, decrease gasifier shut-down frequency for scheduled maintenance, and reduce the maintenance costs. In this traditional 2-stage practice, the temperature reduction in the second stage is achieved at the expense of a higher than normal temperature in the first stage. This study investigates a concept totally opposite to the traditional two-stage coal feeding practices in which the injected oxygen is split between the two stages, while all the coal is fed into the first stage. The hypothesis of this two-stage oxygen injection is that a distributed oxygen injection scheme can also distribute the release of heat to a larger gasifier volume and, thus, reduce the peak temperature distribution in the gasifier. The increased life expectancy and reduced maintenance of the refractory bricks can prevail in the entire gasifier and not just downstream from the second stage. In this study, both experiments and computational simulations have been performed to verify the hypothesis. A series of experiments conducted at 2.5 - 3.0 bars shows that the peak temperature and temperature range in the gasifier do decrease from 600?C - 1550?C with one stage oxygen injection to 950?C - 1230?C with a 60 - 40 oxygen split-injection. The CFD results conducted at 2.5 bars show that 1) the carbon conversion ratio for different oxygen injection schemes are all above 95%; 2) H2 (about 70% vol.) dominates the syngas composition at the exit; 3) the 80% - 20% case yields the lowest peak temperature and the most uniform temperature distribution along the gasifier; and 4) the 40% - 60% case produces the syngas with the highest HHV. Both experimental data and CFD predictions verify the hypothesis that it is feasible to reduce the peak temperature and achieve more uniform temperature in the gasifier by adequately controlling a two-stage oxygen injection with only minor changes of the composition and heating value of the syngas.
机译:采用两段式煤气化气化工艺的传统做法是,在第一段中进料所有氧气以提供大量燃烧,而在第二段中仅进料不含氧气的煤,以使吸热气化工艺进行。发生在第二阶段的下游。这种两阶段操作的优点之一是使第二阶段下游的气化炉温度保持较低。这有助于延长耐火砖的使用寿命,减少气化炉的定期维护停机频率,并降低维护成本。在这种传统的两阶段实践中,第二阶段的温度降低是以比第一阶段的正常温度更高的代价为代价的。这项研究研究的概念与传统的两阶段供煤方法完全相反,在传统的两阶段供煤方法中,注入的氧气在两个阶段之间分配,而所有煤都进入第一阶段。这种两阶段氧气注入的假设是,分布式氧气注入方案还可以将释放的热量分配到更大的气化炉容积中,从而减少气化炉中的峰值温度分布。耐火砖的预期寿命的延长和维护的减少可能会在整个气化炉中发生,而不仅仅是第二阶段的下游。在这项研究中,已经进行了实验和计算模拟以验证该假设。在2.5-3.0巴下进行的一系列实验表明,气化炉的峰值温度和温度范围确实从一级注入氧气的600?C-1550?C降低到带有60-40氧气的950?C-1230?C。分流进样。在2.5巴下进行的CFD结果表明:1)不同氧气注入方案的碳转化率均高于95%。 2)H2(约70%体积)占出口处合成气的主要成分; 3)80%-20%的情况下,沿着气化炉产生的最低峰值温度和最均匀的温度分布; 4)40%-60%的情况产生的合成气具有最高的HHV。实验数据和CFD预测均证实了这样的假设:通过仅控制合成气的组成和热值的微小变化来充分控制两步注氧,可以降低气化炉的峰值温度并实现更均匀的温度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号