首页> 外文期刊>International journal of biological sciences >Fungal Bioconversion of Lignocellulosic Residues; Opportunities & Perspectives
【24h】

Fungal Bioconversion of Lignocellulosic Residues; Opportunities & Perspectives

机译:木质纤维素残留物的真菌生物转化;机会与观点

获取原文
           

摘要

The development of alternative energy technology is critically important because of the rising prices of crude oil, security issues regarding the oil supply, and environmental issues such as global warming and air pollution. Bioconversion of biomass has significant advantages over other alternative energy strategies because biomass is the most abundant and also the most renewable biomaterial on our planet. Bioconversion of lignocellulosic residues is initiated primarily by microorganisms such as fungi and bacteria which are capable of degrading lignocellulolytic materials. Fungi such as Trichoderma reesei and Aspergillus niger produce large amounts of extracellular cellulolytic enzymes, whereas bacterial and a few anaerobic fungal strains mostly produce cellulolytic enzymes in a complex called cellulosome, which is associated with the cell wall. In filamentous fungi, cellulolytic enzymes including endoglucanases, cellobiohydrolases (exoglucanases) and β-glucosidases work efficiently on cellulolytic residues in a synergistic manner. In addition to cellulolytic/hemicellulolytic activities, higher fungi such as basidiomycetes (e.g. Phanerochaete chrysosporium) have unique oxidative systems which together with ligninolytic enzymes are responsible for lignocellulose degradation. This review gives an overview of different fungal lignocellulolytic enzymatic systems including extracellular and cellulosome-associated in aerobic and anaerobic fungi, respectively. In addition, oxidative lignocellulose-degradation mechanisms of higher fungi are discussed. Moreover, this paper reviews the current status of the technology for bioconversion of biomass by fungi, with focus on mutagenesis, co-culturing and heterologous gene expression attempts to improve fungal lignocellulolytic activities to create robust fungal strains.
机译:由于原油价格上涨,与石油供应有关的安全问题以及诸如全球变暖和空气污染等环境问题,替代能源技术的发展至关重要。与其他替代能源策略相比,生物质的生物转化具有显着优势,因为生物质是我们星球上最丰富,也是最可再生的生物材料。木质纤维素残留物的生物转化主要由能够降解木质纤维素分解材料的微生物例如真菌和细菌引发。诸如里氏木霉和黑曲霉之类的真菌会产生大量的细胞外纤维素分解酶,而细菌和一些厌氧真菌菌株大多会在称为纤维素体的复合物中生成纤维素分解酶,这种复合物与细胞壁有关。在丝状真菌中,包括内切葡聚糖酶,纤维二糖水解酶(外切葡聚糖酶)和β-葡萄糖苷酶在内的纤维素分解酶以协同方式有效地作用于纤维素分解残基。除纤维素分解/半纤维素分解活性外,高级真菌,如担子菌(例如,Phanerochaete chrysosporium)具有独特的氧化系统,该氧化系统与木质素分解酶一起负责木质纤维素的降解。这篇综述概述了不同的真菌木质纤维素分解酶系统,包括分别与需氧和厌氧真菌相关的细胞外和纤维素体。此外,讨论了高级真菌的氧化木质纤维素降解机理。此外,本文综述了真菌对生物质进行生物转化的技术的现状,着重介绍了诱变,共培养和异源基因表达试图改善真菌木质纤维素分解活性以创建坚固的真菌菌株的技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号