...
首页> 外文期刊>Integrating Materials and Manufacturing Innovation >Microstructure-Informed Cloud Computing for Interoperability of Materials Databases and Computational Models: Microtextured Regions in Ti Alloys
【24h】

Microstructure-Informed Cloud Computing for Interoperability of Materials Databases and Computational Models: Microtextured Regions in Ti Alloys

机译:用于材料数据库和计算模型互操作性的微结构信息云计算:钛合金中的微织构区域

获取原文
   

获取外文期刊封面封底 >>

       

摘要

With the fast global adoption of the Materials Genome Initiative (MGI), scientists and engineers are faced with the need to conduct sophisticated data analytics on large datasets to extract knowledge that can be used in modeling the behavior of materials. This raises a new problem for materials scientists: how to create and foster interoperability and share developed software tools and generated datasets. A microstructure-informed cloud-based platform (MiCloud?) has been developed that addresses this need, enabling users to easily access and insert microstructure informatics into computational tools that predict performance of engineering products by accounting for microstructural dependencies on manufacturing provenance. The platform extracts information from microstructure data by employing algorithms including signal processing, machine learning, pattern recognition, computer vision, predictive analytics, uncertainty quantification, and data visualization. The interoperability capabilities of MiCloud and its various web-based applications are demonstrated in this case study by analyzing Ti6AlV4 microstructure data via automatic identification of various features of interest and quantifying its characteristics that are used in extracting correlations and causations for the associated mechanical behavior (e.g., yield strength, cold-dwell debit, etc.). The data were recorded by two methods: (1) backscattered electron (BSE) imaging for extracting spatial and morphological information about alpha and beta phases and (2) electron backscatter diffraction (EBSD) for extracting spatial, crystallographic, and morphological information about microtextured regions (MTRs) of the alpha phase. Extracting reliable knowledge from generated information requires data analytics of a large amount of multiscale microstructure data which necessitates the development of efficient algorithms (and the associated software tools) for data recording, analysis, and visualization. The interoperability of these tools and superior effectiveness of the cloud computing approach are validated by featuring several examples of its use in alpha/beta titanium alloys and Ni-based superalloys, reflecting the anticipated computational cost and time savings via the use of web-based applications in implementations of microstructure-informed integrated computational materials engineering (ICME).
机译:随着材料基因组计划(MGI)在全球的迅速采用,科学家和工程师面临着对大型数据集进行复杂的数据分析以提取可用于对材料行为进行建模的知识的需求。这给材料科学家提出了一个新问题:如何创建和促进互操作性以及如何共享开发的软件工具和生成的数据集。已经开发出了一种基于微结构信息的基于云的平台(MiCloud?),可以满足这一需求,使用户能够轻松访问微结构信息并将其插入计算工具中,从而通过考虑对制造来源的微结构依赖性来预测工程产品的性能。该平台采用包括信号处理,机器学习,模式识别,计算机视觉,预测分析,不确定性量化和数据可视化在内的算法,从微结构数据中提取信息。在本案例研究中,通过自动识别各种关注特征并量化其特征来分析Ti6AlV4微观结构数据,从而证明了MiCloud及其各种基于Web的应用程序的互操作性能力,这些特征用于提取相关机械行为的相关性和因果关系(例如, ,屈服强度,冷驻留借记等)。通过两种方法记录数据:(1)反向散射电子(BSE)成像,用于提取有关α和β相的空间和形态信息;(2)电子反向散射衍射(EBSD),用于提取与微织构区域有关的空间,晶体学和形态信息(MTR)。从生成的信息中提取可靠的知识需要对大量多尺度微结构数据进行数据分析,这需要开发用于数据记录,分析和可视化的高效算法(和相关的软件工具)。这些工具在α/β钛合金和Ni基超级合金中的几个使用示例证明了这些工具的互操作性和云计算方法的优越性,反映了通过使用基于Web的应用程序预期的计算成本和时间节省在微结构信息集成计算材料工程(ICME)的实现中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号