...
首页> 外文期刊>INCAS Bulletin >A computational methodology for a micro launcher engine test bench using a combined linear static and dynamic in frequency response analysis
【24h】

A computational methodology for a micro launcher engine test bench using a combined linear static and dynamic in frequency response analysis

机译:结合线性静态和动态频率响应分析的微型发射器发动机试验台的计算方法

获取原文
           

摘要

This article aims to provide a quick methodology to determine the critical values of the forces, displacements and stress function of frequency, under a combined linear static (101 Solution - Linear Static) and dynamic load in frequency response (108 Solution - Frequency Response, Direct Method), applied to a micro launcher engine test bench, using NASTRAN 400 Solution - Implicit Nonlinear. NASTRAN/PATRAN software is used. Practically in PATRAN the preprocessor has to define a linear or nonlinear static load at step 1 and a dynamic in frequency response load (time dependent) at step 2. In Analyze the following options are chosen: for Solution Type Implicit Nonlinear Solution (SOL 400) is selected, for Subcases Static Load and Transient Dynamic is chosen and for Subcase Select the two cases static and dynamic will be selected. NASTRAN solver will overlap results from static analysis with the dynamic analysis. The running time will be reduced three times if using Krylov solver. NASTRAN SYSTEM (387) = -1 instruction is used in order to activate Krylov option. Also, in Analysis the OP2 Output Format shall be selected, meaning that in bdf NASTRAN input file the PARAM POST 1 instruction shall be written. The structural damping can be defined in two different ways: either at the material card or using the PARAM, G, 0.05 instruction (in this example a damping coefficient by 5% was used). The SDAMPING instruction in pair with TABDMP1 work only for dynamic in frequency response, modal method, or in direct method with viscoelastic material, not for dynamic in frequency response, direct method (DFREQ), with linear elastic material. The Direct method – DFREQ used in this example is more accurate. A set in translation of boundary conditions was used and defined at the base of the test bench.
机译:本文旨在提供一种快速的方法,以确定在线性静态(101解-线性静态)和动态负载在频率响应(108解-频率响应,直接)的组合下,频率的力,位移和应力函数的临界值方法),使用NASTRAN 400解决方案-隐式非线性应用于微发射器发动机测试台。使用NASTRAN / PATRAN软件。实际上,在PATRAN中,预处理器必须在步骤1中定义线性或非线性静态负载,并在步骤2中定义动态的频率响应负载(与时间有关)。在分析中,选择以下选项:对于解决方案类型隐式非线性解决方案(SOL 400)选中,对于“子工况”选择了“静载荷”和“瞬态动态”,对于“子工况选择”,将选择“静态”和“动态”两种情况。 NASTRAN求解器会将静态分析的结果与动态分析的结果重叠。如果使用Krylov求解器,运行时间将减少三倍。 NASTRAN SYSTEM(387)= -1指令用于激活Krylov选项。同样,在分析中应选择OP2输出格式,这意味着在bdf NASTRAN输入文件中应写入PARAM POST 1指令。可以通过两种不同的方式定义结构阻尼:在材料卡上或使用PARAM,G,0.05指令(在此示例中,使用5%的阻尼系数)。与TABDMP1配合使用的SDAMPING指令仅适用于动态响应的频率响应,模态方法,或者适用于直接使用粘弹性材料的方法,不适用于动态响应的频率响应直接方法(DFREQ),适用于线性弹性材料。在此示例中使用的直接方法– DFREQ更准确。使用了一组边界条件转换,并在测试台的底部进行了定义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号