首页> 外文期刊>IEEJ Journal of Industry Applications >Design of Compensation Capacitor in S/P Topology of Inductive Power Transfer System with Buck or Boost Converter on Secondary Side
【24h】

Design of Compensation Capacitor in S/P Topology of Inductive Power Transfer System with Buck or Boost Converter on Secondary Side

机译:次级侧具有Buck或Boost转换器的感应电力传输系统S / P拓扑中的补偿电容器的设计

获取原文
       

摘要

When an inductive power transfer system is applied to a battery charger for electric vehicles, a diode bridge rectifier with a dc-dc converter, called a secondary-side converter in this paper, is connected to the secondary side of the resonant circuit in order to regulate the current and voltage of the battery. A compensation capacitor is typically used to improve the input power factor in an inductive power transfer system, and a resonant circuit is configured. This paper presents a design method for the primary compensation capacitor in an inductive power transfer system with series compensation on the primary side and parallel compensation on the secondary side (S/P topology) to connect a boost or buck converter via a rectifier circuit on the receiving side. For the S/P topology, the capacitance of the primary-side compensation capacitor influences the duty ratio of the switch used in the secondary-side converter because it affects the input-to-output voltage ratio of the resonant circuit. Further, the duty ratio of the secondary-side converter affects the resonant-circuit efficiency. In addition, the primary compensation capacitance affects the output power factor of the inverter, which is connected to the primary side of the resonant circuit. Therefore, the capacitance of the primary-side compensation capacitor also affects the inverter efficiency and resonant-circuit efficiency. In this paper, a primary-side capacitor design method is examined. The results show that the optimum capacitance using a buck converter differs from that using a boost converter.
机译:当感应式功率传输系统应用于电动汽车的电池充电器时,带有dc-dc转换器的二极管桥式整流器(在本文中称为次级侧转换器)连接到谐振电路的次级侧,以便调节电池的电流和电压。补偿电容器通常用于改善感应功率传输系统中的输入功率因数,并配置了谐振电路。本文提出了一种感应功率传输系统中的初级补偿电容器的设计方法,该系统在初级侧进行串联补偿,在次级侧进行并联补偿(S / P拓扑),以通过升压或降压转换器上的整流电路连接升压或降压转换器接收方。对于S / P拓扑,一次侧补偿电容器的电容会影响二次侧转换器中使用的开关的占空比,因为它会影响谐振电路的输入输出电压比。此外,次级侧转换器的占空比影响谐振电路效率。此外,初级补偿电容会影响逆变器的输出功率因数,该逆变器连接到谐振电路的初级侧。因此,初级侧补偿电容器的电容也会影响逆变器效率和谐振电路效率。本文研究了一次侧电容器的设计方法。结果表明,使用降压转换器的最佳电容与使用升压转换器的最佳电容不同。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号