...
首页> 外文期刊>Atmospheric Measurement Techniques Discussions >Towards imaging of atmospheric trace gases using Fabry–Pérot interferometer correlation spectroscopy in the UV and visible spectral range
【24h】

Towards imaging of atmospheric trace gases using Fabry–Pérot interferometer correlation spectroscopy in the UV and visible spectral range

机译:使用法布里-珀罗干涉仪相关光谱在紫外和可见光谱范围内成像大气痕量气体

获取原文
           

摘要

Many processes in the lower atmosphere including transport, turbulent mixing and chemical conversions happen on timescales of the order of seconds (e.g. at point sources). Remote sensing of atmospheric trace gases in the UV and visible spectral range (UV–Vis) commonly uses dispersive spectroscopy (e.g. differential optical absorption spectroscopy, DOAS). The recorded spectra allow for the direct identification, separation and quantification of narrow-band absorption of trace gases. However, these techniques are typically limited to a single viewing direction and limited by the light throughput of the spectrometer set-up. While two-dimensional imaging is possible by spatial scanning, the temporal resolution remains poor (often several minutes per image). Therefore, processes on timescales of seconds cannot be directly resolved by state-of-the-art dispersive methods. We investigate the application of Fabry–Pérot interferometers (FPIs) for the optical remote sensing of atmospheric trace gases in the UV–Vis spectral range. By choosing a FPI transmission spectrum, which is optimised to correlate with narrow-band (ideally periodic) absorption structures of the target trace gas, column densities of the trace gas can be determined with a sensitivity and selectivity comparable to dispersive spectroscopy, using only a small number of spectral channels (FPI tuning settings). Different from dispersive optical elements, the FPI can be implemented in full-frame imaging set-ups (cameras), which can reach high spatio-temporal resolution. In principle, FPI correlation spectroscopy can be applied for any trace gas with distinct absorption structures in the UV–Vis range. We present calculations for the application of FPI correlation spectroscopy to SOsub2/sub , BrO and NOsub2/sub for exemplary measurement scenarios. In addition to high sensitivity and selectivity we find that the spatio temporal resolution of FPI correlation spectroscopy can be more than 2 orders of magnitude higher than state-of-the-art DOAS measurements. As proof of concept we built a 1-pixel prototype implementing the technique for SOsub2/sub in the UV. Good agreement with our calculations and conventional measurement techniques is demonstrated and no cross sensitivities to other trace gases are observed.
机译:在较低层大气中的许多过程,包括运输,湍流混合和化学转化,都在几秒的时间尺度上发生(例如在点源处)。紫外线和可见光谱范围(UV-Vis)中大气痕量气体的遥感通常使用色散光谱法(例如,差分光学吸收光谱法,DOAS)。记录的光谱可以直接鉴定,分离和量化痕量气体的窄带吸收。然而,这些技术通常限于单个观察方向,并且受光谱仪装置的光通过量的限制。尽管可以通过空间扫描进行二维成像,但时间分辨率仍然很差(每张图像通常需要几分钟)。因此,以秒为单位的时间尺度的过程无法通过最新的分散方法直接解决。我们研究了法布里-珀罗干涉仪(FPI)在紫外-可见光谱范围内的大气痕量气体的光学遥感中的应用。通过选择经过优化以与目标示踪气体的窄带(理想的周期性)吸收结构相关联的FPI透射光谱,可以仅使用气相色谱法测定色散气体的柱密度,其灵敏度和选择性与色散光谱相当。光谱通道数量少(FPI调整设置)。与色散光学元件不同,FPI可以在全帧成像装置(相机)中实现,可以达到高时空分辨率。原则上,FPI相关光谱法可用于在UV-Vis范围内具有不同吸收结构的任何痕量气体。我们介绍了将FPI相关光谱法应用于SO 2 ,BrO和NO 2 的计算方法,用于示例性测量场景。除了高灵敏度和选择性外,我们发现FPI相关光谱的时空分辨率比最新的DOAS测量高2个数量级。作为概念验证,我们构建了一个1像素原型,该原型在UV中实现了SO 2 的技术。证明了与我们的计算和常规测量技术的良好一致性,并且未观察到对其他痕量气体的交叉敏感性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号