...
首页> 外文期刊>Atmospheric Measurement Techniques >Data inversion methods to determine sub-3?nm aerosol size distributions using the particle size magnifier
【24h】

Data inversion methods to determine sub-3?nm aerosol size distributions using the particle size magnifier

机译:数据反演方法,使用粒径放大器确定3纳米以下的气溶胶粒径分布

获取原文
           

摘要

Measuring particle size distribution accurately down to approximately 1?nm is needed for studying atmospheric new particle formation. The scanning particle size magnifier (PSM) using diethylene glycol as a working fluid has been used for measuring sub-3?nm atmospheric aerosol. A proper inversion method is required to recover the particle size distribution from PSM raw data. Similarly to other aerosol spectrometers and classifiers, PSM inversion can be deduced from a problem described by the Fredholm integral equation of the first kind. We tested the performance of the stepwise method, the kernel function method (Lehtipalo et al., 2014), the H&A linear inversion method (Hagen and Alofs, 1983), and the expectation–maximization (EM) algorithm. The stepwise method and the kernel function method were used in previous studies on PSM. The H&A method and the expectation–maximization algorithm were used in data inversion for the electrical mobility spectrometers and the diffusion batteries, respectively (Maher and Laird, 1985). In addition, Monte Carlo simulation and laboratory experiments were used to test the accuracy and precision of the particle size distributions recovered using four inversion methods. When all of the detected particles are larger than 3?nm, the stepwise method may report false sub-3?nm particle concentrations because an infinite resolution is assumed while the kernel function method and the H&A method occasionally report false sub-3?nm particles because of the unstable least squares method. The accuracy and precision of the recovered particle size distribution using the EM algorithm are the best among the tested four inversion methods. Compared to the kernel function method, the H&A method reduces the uncertainty while keeping a similar computational expense. The measuring uncertainties in the present scanning mode may contribute to the uncertainties of the recovered particle size distributions. We suggest using the EM algorithm to retrieve the particle size distributions using the particle number concentrations recorded by the PSM. Considering the relatively high computation expenses of the EM algorithm, the H&A method is recommended for preliminary data analysis. We also gave practical suggestions on PSM operation based on the inversion analysis.
机译:为了研究大气中新颗粒的形成,需要精确地测量粒径分布至大约1?nm。使用二甘醇作为工作流体的扫描粒度放大器(PSM)已用于测量3纳米以下的大气气溶胶。需要一种适当的反演方法来从PSM原始数据中恢复粒径分布。与其他气溶胶光谱仪和分类器类似,可以从第一类Fredholm积分方程描述的问题推导PSM求逆。我们测试了逐步方法,核函数方法(Lehtipalo等,2014),H&A线性反演方法(Hagen和Alofs,1983)以及期望最大化(EM)算法的性能。在以前的PSM研究中使用了逐步方法和核函数方法。 H&A方法和期望最大化算法分别用于电迁移率谱仪和扩散电池的数据反演中(Maher和Laird,1985年)。此外,使用蒙特卡洛模拟和实验室实验来测试使用四种反演方法回收的粒度分布的准确性和精密度。当所有检测到的粒子都大于3?nm时,逐步方法可能会报告错误的亚3?nm粒子浓度,因为假定无限分辨率,而核函数法和H&A方法偶尔会报告错误的3?nm粒子。由于不稳定的最小二乘法。在测试的四种反演方法中,使用EM算法获得的粒度分布的准确性和精度最高。与内核函数方法相比,H&A方法减少了不确定性,同时保持了相似的计算费用。当前扫描模式下的测量不确定度可能会影响回收的粒度分布的不确定度。我们建议使用EM算法通过PSM记录的颗粒数浓度来检索粒度分布。考虑到EM算法的较高计算费用,建议使用H&A方法进行初步数据分析。在反演分析的基础上,我们还对PSM的操作提出了实用的建议。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号