...
首页> 外文期刊>Atmospheric Measurement Techniques Discussions >Data inversion methods to determine sub-3nm aerosol size distributions using the particle size magnifier
【24h】

Data inversion methods to determine sub-3nm aerosol size distributions using the particle size magnifier

机译:使用粒度放大镜确定子3NM气溶胶尺寸分布的数据反演方法

获取原文
           

摘要

Measuring particle size distribution accurately down to approximately 1nm is needed for studying atmospheric new particle formation. The scanning particle size magnifier (PSM) using diethylene glycol as a working fluid has been used for measuring sub-3nm atmospheric aerosol. A proper inversion method is required to recover the particle size distribution from PSM raw data. Similarly to other aerosol spectrometers and classifiers, PSM inversion can be deduced from a problem described by the Fredholm integral equation of the first kind. We tested the performance of the stepwise method, the kernel function method (Lehtipalo et al., 2014), the HA linear inversion method (Hagen and Alofs, 1983), and the expectation–maximization (EM) algorithm. The stepwise method and the kernel function method were used in previous studies on PSM. The HA method and the expectation–maximization algorithm were used in data inversion for the electrical mobility spectrometers and the diffusion batteries, respectively (Maher and Laird, 1985). In addition, Monte Carlo simulation and laboratory experiments were used to test the accuracy and precision of the particle size distributions recovered using four inversion methods. When all of the detected particles are larger than 3nm, the stepwise method may report false sub-3nm particle concentrations because an infinite resolution is assumed while the kernel function method and the HA method occasionally report false sub-3nm particles because of the unstable least squares method. The accuracy and precision of the recovered particle size distribution using the EM algorithm are the best among the tested four inversion methods. Compared to the kernel function method, the HA method reduces the uncertainty while keeping a similar computational expense. The measuring uncertainties in the present scanning mode may contribute to the uncertainties of the recovered particle size distributions. We suggest using the EM algorithm to retrieve the particle size distributions using the particle number concentrations recorded by the PSM. Considering the relatively high computation expenses of the EM algorithm, the HA method is recommended for preliminary data analysis. We also gave practical suggestions on PSM operation based on the inversion analysis.
机译:用于学习大气新颗粒形成需要测量粒度分布至约1nm。使用二甘醇作为工作流体的扫描粒度放大镜(PSM)已用于测量亚3NM大气气溶胶。需要一种正确的反转方法来从PSM原始数据中恢复粒度分布。与其他气溶胶光谱仪和分类器类似,可以从第一类Fredholm积分方程所描述的问题推导出PSM反转。我们测试了逐步方法的性能,内核功能方法(Lehtipalo等,2014),HA线性反转方法(Hagen和Alofs,1983),以及期望最大化(EM)算法。在PSM的先前研究中使用逐步方法和核功能方法。 HA方法和期望最大化算法分别用于电动迁移率和扩散电池(Maher和Laird,1985)的数据转换。此外,Monte Carlo仿真和实验室实验用于测试使用四种反转方法回收粒度分布的精度和精度。当所有检测到的粒子大于3nm时,逐步方法可以报告假子3nm粒子浓度,因为由于最小的最小二乘次数偶尔报告错误的子3nm粒子,则假设无限分辨率。方法。使用EM算法的回收粒度分布的准确性和精度是测试的四种反转方法中的最佳。与内核功能方法相比,HA方法在保持类似的计算费用的同时降低不确定性。本扫描模式中的测量不确定性可能有助于回收的粒度分布的不确定性。我们建议使用EM算法使用PSM记录的粒子数浓度来检索粒度分布。考虑到EM算法的相对高的计算费用,建议使用HA方法进行初步数据分析。我们还对基于反演分析的PSM操作进行了实用的建议。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号