首页> 外文期刊>Atmospheric Chemistry and Physics Discussions >Sensitivity of the recent methane budget to LMDz sub-grid-scale physical parameterizations
【24h】

Sensitivity of the recent methane budget to LMDz sub-grid-scale physical parameterizations

机译:近期甲烷预算对LMDz亚电网规模物理参数化的敏感性

获取原文
           

摘要

pstrongAbstract./strong With the densification of surface observing networks and the development of remote sensing of greenhouse gases from space, estimations of methane (CHsub4/sub) sources and sinks by inverse modeling are gaining additional constraining data but facing new challenges. The chemical transport model (CTM) linking the flux space to methane mixing ratio space must be able to represent these different types of atmospheric constraints for providing consistent flux estimations. brbr Here we quantify the impact of sub-grid-scale physical parameterization errors on the global methane budget inferred by inverse modeling. We use the same inversion setup but different physical parameterizations within one CTM. Two different schemes for vertical diffusion, two others for deep convection, and one additional for thermals in the planetary boundary layer (PBL) are tested. Different atmospheric methane data sets are used as constraints (surface observations or satellite retrievals). brbr At the global scale, methane emissions differ, on average, from 4.1 Tg CHsub4/sub per year due to the use of different sub-grid-scale parameterizations. Inversions using satellite total-column mixing ratios retrieved by GOSAT are less impacted, at the global scale, by errors in physical parameterizations. Focusing on large-scale atmospheric transport, we show that inversions using the deep convection scheme of Emanuel (1991) derive smaller interhemispheric gradients in methane emissions, indicating a slower interhemispheric exchange. At regional scale, the use of different sub-grid-scale parameterizations induces uncertainties ranging from 1.2 % (2.7 %) to 9.4 % (14.2 %) of methane emissions when using only surface measurements from a background (or an extended) surface network. Moreover, spatial distribution of methane emissions at regional scale can be very different, depending on both the physical parameterizations used for the modeling of the atmospheric transport and the observation data sets used to constrain the inverse system. brbr When using only satellite data from GOSAT, we show that the small biases found in inversions using a coarser version of the transport model are actually masking a poor representation of the stratospherea??troposphere methane gradient in the model. Improving the stratospherea??troposphere gradient reveals a larger bias in GOSAT CHsub4/sub satellite data, which largely amplifies inconsistencies between the surface and satellite inversions. A simple bias correction is proposed. The results of this work provide the level of confidence one can have for recent methane inversions relative to physical parameterizations included in CTMs./p.
机译:> >摘要。随着地面观测网络的致密化和从空间遥感温室气体的发展,通过反演估算甲烷(CH 4 )的源和汇建模正在获得更多约束数据,但面临新的挑战。将通量空间与甲烷混合比空间联系起来的化学传输模型(CTM)必须能够代表这些不同类型的大气限制条件,以提供一致的通量估计值。 在这里,我们量化了反网格推断的次网格规模物理参数错误对全球甲烷预算的影响。我们在一个CTM中使用相同的反演设置,但使用不同的物理参数设置。测试了两种不同的垂直扩散方案,另外两种用于深对流方案,另一种方案用于行星边界层(PBL)中的热量。不同的大气甲烷数据集被用作约束条件(地表观测或卫星检索)。 在全球范围内,由于使用了不同的次网格规模参数化,甲烷的平均排放量每年平均不同于4.1 Tg CH 4 。在全球范围内,使用GOSAT检索的卫星总柱混合比进行的反演受物理参数设置错误的影响较小。着眼于大规模的大气传输,我们表明,使用伊曼纽尔(1991)的深对流方案进行的反演得出甲烷排放的半球间梯度较小,表明半球间交换较慢。在区域范围内,当仅使用来自背景(或扩展的)地面网络的地面测量值时,使用不同的亚电网规模参数设置会导致甲烷排放量的不确定性范围为1.2%(2.7%)至9.4%(14.2%)。而且,取决于用于大气传输模型的物理参数化和用于约束逆系统的观测数据集,甲烷排放在区域范围内的空间分布可能会有很大差异。 当仅使用来自GOSAT的卫星数据时,我们表明,使用较粗略的运输模型的反演中发现的小偏差实际上掩盖了模型中平流层-对流层甲烷梯度的不良表示。平流层和对流层梯度的改善揭示了GOSAT CH 4 卫星数据的较大偏差,这大大放大了地表和卫星反演之间的不一致性。提出了一种简单的偏差校正。这项工作的结果提供了相对于CTM中包含的物理参数设置而言,人们对最近的甲烷反演具有信心的水平。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号