...
首页> 外文期刊>Atmospheric chemistry and physics >Sensitivity of the recent methane budget to LMDz sub-grid-scale physical parameterizations
【24h】

Sensitivity of the recent methane budget to LMDz sub-grid-scale physical parameterizations

机译:近期甲烷预算对LMDz亚电网规模物理参数化的敏感性

获取原文
   

获取外文期刊封面封底 >>

       

摘要

With the densification of surface observing networks and the development ofremote sensing of greenhouse gases from space, estimations of methane(CH4) sources and sinks by inverse modeling are gaining additionalconstraining data but facing new challenges. The chemical transport model (CTM)linking the flux space to methane mixing ratio space must be able torepresent these different types of atmospheric constraints for providingconsistent flux estimations.Here we quantify the impact of sub-grid-scale physical parameterizationerrors on the global methane budget inferred by inverse modeling. We use thesame inversion setup but different physical parameterizations within oneCTM. Two different schemes for vertical diffusion, twoothers for deep convection, and one additional for thermals in the planetaryboundary layer (PBL) are tested. Different atmospheric methane data sets are used asconstraints (surface observations or satellite retrievals).At the global scale, methane emissions differ, on average, from 4.1 Tg CH4 per year due to the use of different sub-grid-scaleparameterizations. Inversions using satellite total-column mixing ratiosretrieved by GOSAT are less impacted, at the global scale, byerrors in physical parameterizations. Focusing on large-scale atmospherictransport, we show that inversions using the deep convection scheme ofEmanuel (1991) derive smaller interhemispheric gradients in methaneemissions, indicating a slower interhemispheric exchange. At regional scale,the use of different sub-grid-scale parameterizations induces uncertaintiesranging from 1.2 % (2.7 %) to 9.4 % (14.2 %) of methane emissionswhen using only surface measurements from a background (or anextended) surface network. Moreover, spatial distribution of methaneemissions at regional scale can be very different, depending on both thephysical parameterizations used for the modeling of the atmospherictransport and the observation data sets used to constrain the inversesystem. When usingonly satellite data from GOSAT, we show that the small biases found ininversions using a coarser version of the transport model are actuallymasking a poor representation of the stratosphere–troposphere methanegradient in the model. Improving the stratosphere–troposphere gradientreveals a larger bias in GOSAT CH4 satellite data, which largelyamplifies inconsistencies between the surface and satellite inversions. A simplebias correction is proposed. The results of this work provide the level ofconfidence one can have for recent methane inversions relative to physicalparameterizations included in CTMs.
机译:随着地面观测网络的致密化和空间温室气体遥感的发展,通过逆向模型估算甲烷(CH 4 )源和汇的方法正在获得更多的约束数据,但面临着新的挑战。将通量空间与甲烷混合比空间联系起来的化学传输模型(CTM)必须能够代表这些不同类型的大气约束条件,以提供一致的通量估计值。 在此,我们量化了亚网格规模物理参数化误差的影响。通过逆模型推断的全球甲烷预算。我们使用相同的反演设置,但在oneCTM中使用不同的物理参数设置。测试了两种不同的垂直扩散方案,另外两种用于深对流方案,另一种方案用于解决行星边界层(PBL)中的热量。使用不同的大气甲烷数据集作为约束(地表观测或卫星检索)。 在全球范围内,由于以下原因,甲烷的平均排放量每年平均不同于4.1 Tg CH 4 使用不同的子网格规模参数。在全球范围内,使用GOSAT检索的卫星总柱混合比进行的反演对物理参数设置中的错误影响较小。着眼于大规模的大气传输,我们表明,使用伊曼纽尔(1991)的深对流方案进行的反演得出甲烷排放的半球间梯度较小,表明半球间交换较慢。在区域范围内,当仅使用来自背景(或扩展)地面网络的地面测量值时,使用不同的亚电网规模参数设置会导致甲烷排放量的不确定性范围为1.2%(2.7%)至9.4%(14.2%)。此外,取决于用于大气传输模型的物理参数化和用于约束逆系统的观测数据集,甲烷排放在区域尺度上的空间分布可能会有很大差异。 仅使用来自GOSAT的卫星数据时,我们表明,使用较粗略的输运模型反演中发现的小偏差实际上掩盖了模型中平流层-对流层甲烷梯度的不良表示。平流层-对流层梯度的改善揭示了GOSAT CH 4 卫星数据的更大偏差,这大大放大了地表和卫星反演之间的不一致性。提出了简单偏差校正。这项工作的结果提供了人们对CTM中包含的物理参数化相关的最新甲烷转化的信心程度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号