首页> 外文期刊>Atmospheric Measurement Techniques >Improved methods for signal processing in measurements of mercury by Tekransup?/sup 2537A and 2537B instruments
【24h】

Improved methods for signal processing in measurements of mercury by Tekransup?/sup 2537A and 2537B instruments

机译:Tekran ? 2537A和2537B仪器测量汞时信号处理的改进方法

获取原文
           

摘要

Atmospheric Hg measurements are commonly carried out using Tekransup?/sup Instruments Corporation's model 2537 Hg vapor analyzers, which employ gold amalgamation preconcentration sampling and detection by thermal desorption (TD) and atomic fluorescence spectrometry (AFS). A generally overlooked and poorly characterized source of analytical uncertainty in those measurements is the method by which the raw Hg atomic fluorescence (AF) signal is processed. Here I describe new software-based methods for processing the raw signal from the Tekransup?/sup 2537 instruments, and I evaluate the performances of those methods together with the standard Tekransup?/sup internal signal processing method. For test datasets from two Tekransup?/sup instruments (one 2537A and one 2537B), I estimate that signal processing uncertainties in Hg loadings determined with the Tekransup?/sup method are within ±[1?%?+? 1.2?pg] and ±[6?%?+?0.21?pg], respectively. I demonstrate that the Tekransup?/sup method can produce significant low biases (≥??5?%) not only at low Hg sample loadings (&??5?pg) but also at tropospheric background concentrations of gaseous elemental mercury (GEM) and total mercury (THg) (~??1 to 2?ng?msup?3/sup) under typical operating conditions (sample loadings of 5–10?pg). Signal processing uncertainties associated with the Tekransup?/sup method can therefore represent a significant unaccounted for addition to the overall ?~??10 to 15?% uncertainty previously estimated for Tekransup?/sup-based GEM and THg measurements. Signal processing bias can also add significantly to uncertainties in Tekransup?/sup-based gaseous oxidized mercury (GOM) and particle-bound mercury (PBM) measurements, which often derive from Hg sample loadings?&?5?pg. In comparison, estimated signal processing uncertainties associated with the new methods described herein are low, ranging from within ±0.053?pg, when the Hg thermal desorption peaks are defined manually, to within ±[2?%?+?0.080?pg] when peak definition is automated. Mercury limits of detection (LODs) decrease by 31 to 88?% when the new methods are used in place of the Tekransup?/sup method. I recommend that signal processing uncertainties be quantified in future applications of the Tekransup?/sup 2537 instruments.
机译:大气中的汞测量通常使用Tekran ? Instruments Corporation的2537型汞蒸气分析仪进行,该仪器采用金汞齐合富集取样并通过热脱附(TD)和原子荧光光谱(AFS)进行检测。在那些测量中,分析不确定性的一个普遍被忽视且特征不明确的来源是处理原始汞原子荧光(AF)信号的方法。在这里,我描述了基于软件的新方法,用于处理Tekran ? 2537仪器的原始信号,并评估了这些方法与标准Tekran ?内部信号的性能。处理方法。对于来自两种Tekran ?仪器(一台2537A和一台2537B)的测试数据集,我估计用Tekran ?方法确定的汞负荷中信号处理的不确定性在±[1以内?%?+?分别为1.2≤pg]和±[6 %% ++0.21μpg]。我证明了Tekran ?方法不仅在低Hg样品加载量(<?5?pg)时而且在对流层本底浓度为5%时都能产生明显的低偏差(≥?5?%)。气态元素汞(GEM)和总汞(THg)(〜?1至2?ng?m ?3 )在典型操作条件下(样品量为5–10?pg)。因此,与Tekran ?方法相关的信号处理不确定性可能代表了一个巨大的不确定因素,而先前估计的Tekran ?-总体?〜?10%至15 %%不确定性没有增加。基于GEM和THg的测量。信号处理偏差还会显着增加基于Tekran ?的气态氧化汞(GOM)和颗粒结合汞(PBM)测量的不确定性,这些不确定性通常来自于汞样品的负载量<5。 pg。相比之下,与本文所述的新方法相关的估计信号处理不确定性较低,范围在手动定义Hg热解吸峰时在±0.053µpg之内,在手动确定Hg热解吸峰时的±[2 %% ++ 0.080µpg]峰定义是自动的。当使用新方法代替Tekran ?方法时,汞的检出限(LOD)降低31%至88%。我建议在Tekran ? 2537仪器的未来应用中对信号处理的不确定性进行量化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号