首页> 外文期刊>Atmospheric Measurement Techniques >Evaluation of continuous water vapor δD and δsup18/supO measurements by off-axis integrated cavity output spectroscopy
【24h】

Evaluation of continuous water vapor δD and δsup18/supO measurements by off-axis integrated cavity output spectroscopy

机译:离轴积分腔输出光谱法评估连续水蒸气δD和δ 18 O的测量

获取原文
       

摘要

Recent commercially available laser spectroscopy systems enabled us to continuously and reliably measure the δD and δsup18/supO of atmospheric water vapor. The use of this new technology is becoming popular because of its advantages over the conventional approach based on cold trap collection. These advantages include much higher temporal resolution/continuous monitoring and the ability to make direct measurements of both isotopes in the field. Here, we evaluate the accuracy and precision of the laser based water vapor isotope instrument through a comparison of measurements with those found using the conventional cold trap method. A commercially available water vapor isotope analyzer (WVIA) with the vaporization system of a liquid water standard (Water Vapor Isotope Standard Source, WVISS) from Los Gatos Research (LGR) Inc. was used for this study. We found that the WVIA instrument can provide accurate results if (1) correction is applied for time-dependent isotope drift, (2) normalization to the VSMOW/SLAP scale is implemented, and (3) the water vapor concentration dependence of the isotopic ratio is also corrected. In addition, since the isotopic value of water vapor generated by the WVISS is also dependent on the concentration of water vapor, this effect must be considered to determine the true water vapor concentration effect on the resulting isotope measurement. brbr To test our calibration procedure, continuous water vapor isotope measurements using both a laser instrument and a cold trap system were carried out at the IAEA Isotope Hydrology Laboratory in Vienna from August to December 2011. The calibrated isotopic values measured using the WVIA agree well with those obtained via the cold trap method. The standard deviation of the isotopic difference between both methods is about 1.4‰ for δD and 0.28‰ for δsup18/supO. This precision allowed us to obtain reliable values for id/i-excess. The day-to-day variation of id/i-excess measured by WVIA also agrees well with that found using the cold trap method. These results demonstrate that a coupled system, using commercially available WVIA and WVISS instruments can provide continuous and accurate isotope data, with results achieved similar to those obtained using the conventional method, but with drastically improved temporal resolution.
机译:最近的市售激光光谱系统使我们能够连续可靠地测量大气水蒸气的δD和δ 18 O。由于它比基于冷阱收集的常规方法具有优势,因此使用这种新技术变得很受欢迎。这些优势包括更高的时间分辨率/连续监测以及在现场直接测量两种同位素的能力。在这里,我们通过将测量值与使用常规冷阱法获得的测量值进行比较,来评估基于激光的水蒸气同位素仪的准确性和精度。这项研究使用的是市售的水蒸气同位素分析仪(WVIA),它具有Los Gatos Research(LGR)Inc.的液态水标准品(水蒸气同位素标准品来源,WVISS)的汽化系统。我们发现,如果(1)对时间依赖性同位素漂移进行校正,(2)对VSMOW / SLAP标度进行归一化以及(3)同位素比对水蒸气浓度的依赖性,则WVIA仪器可以提供准确的结果。也得到纠正。另外,由于WVISS产生的水蒸气的同位素值也取决于水蒸气的浓度,因此必须考虑这种影响,以确定对所得同位素测量值的真实水蒸气浓度影响。 为了测试我们的校准程序,2011年8月至2011年12月,在维也纳的IAEA同位素水文学实验室进行了使用激光仪器和冷阱系统的连续水蒸气同位素测量。 WVIA与通过冷阱法获得的结果非常吻合。两种方法之间的同位素差的标准差约为1.4微米。 δD为0.28‰对于&ltta; 18 O。这种精度使我们可以获得 d -excess的可靠值。 WVIA测得的 d 过量的每日变化也与使用冷阱法得到的变化非常吻合。这些结果表明,使用可商购的WVIA和WVISS仪器的耦合系统可以提供连续且准确的同位素数据,所获得的结果与使用常规方法获得的结果相似,但时间分辨率大大提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号