首页> 外文期刊>Atmospheric Measurement Techniques >Effect of spectrally varying albedo of vegetation surfaces on shortwave radiation fluxes and aerosol direct radiative forcing
【24h】

Effect of spectrally varying albedo of vegetation surfaces on shortwave radiation fluxes and aerosol direct radiative forcing

机译:植被表面光谱反照率对短波辐射通量和气溶胶直接辐射强迫的影响

获取原文
           

摘要

This study develops an algorithm for representing detailed spectral featuresof vegetation albedo based on Moderate Resolution Imaging Spectrometer(MODIS) observations at 7 discrete channels, referred to as the MODISEnhanced Vegetation Albedo (MEVA) algorithm. The MEVA algorithm empiricallyfills spectral gaps around the vegetation red edge near 0.7 μm andvegetation water absorption features at 1.48 and 1.92 μm which cannotbe adequately captured by the MODIS 7 channels. We then assess the effectsof applying MEVA in comparison to four other traditional approaches tocalculate solar fluxes and aerosol direct radiative forcing (DRF) at the topof atmosphere (TOA) based on the MODIS discrete reflectance bands. Bycomparing the DRF results obtained through the MEVA method with the resultsobtained through the other four traditional approaches, we show that fillingthe spectral gap of the MODIS measurements around 0.7 μm based on thegeneral spectral behavior of healthy green vegetation leads to significantimprovement in the instantaneous aerosol DRF at TOA (up to 3.02 W m?2difference or 48% fraction of the aerosol DRF, ?6.28 W m?2,calculated for high spectral resolution surface reflectance from 0.3 to 2.5 μmfor deciduous vegetation surface). The corrections of the spectralgaps in the vegetation spectrum in the near infrared, again missed by theMODIS reflectances, also contributes to improving TOA DRF calculations butto a much lower extent (less than 0.27 W m?2, or about 4% of theinstantaneous DRF).Compared to traditional approaches, MEVA also improves the accuracy of theoutgoing solar flux between 0.3 to 2.5 μm at TOA by over 60 W m?2(for aspen 3 surface) and aerosol DRF by over 10 W m?2 (for dry grass).Specifically, for Amazon vegetation types, MEVA can improve the accuracy ofdaily averaged aerosol radiative forcing in the spectral range of 0.3 to2.5 μm at equator at the equinox by 3.7 W m?2. These improvementsindicate that MEVA can contribute to regional climate studies over vegetatedareas and can help to improve remote sensing-based studies of climateprocesses and climate change.
机译:本研究基于中等分辨率成像光谱仪(MODIS)在7个离散通道上的观测结果,开发了一种表示植被反照率详细光谱特征的算法,称为MODIS增强植被反照率(MEVA)算法。 MEVA算法凭经验填充0.7μm附近的植被红色边缘周围的光谱间隙,以及1.48和1.92μm处的植被吸水特征,而MODIS 7通道无法充分捕获。然后,我们根据MODIS离散反射带,将MEVA与其他四种传统方法进行比较,以评估太阳通量和大气最高层(TOA)的气溶胶直接辐射强迫(DRF)。通过将通过MEVA方法获得的DRF结果与通过其他四种传统方法获得的结果进行比较,我们发现,基于健康绿色植被的一般光谱行为,填补MODIS测量值的光谱间隙在0.7μm左右会显着改善瞬时气溶胶DRF。 TOA(高达3.02 W m ?2 的差异或占气溶胶DRF的48%的分数,?6.28 W m ?2 ,是针对0.3至200的高光谱分辨率表面反射率而计算的落叶植被表面为2.5μm)。再次被MODIS反射所遗漏的近红外植被光谱中光谱间隙的校正,也有助于改善TOA DRF计算,但幅度要小得多(小于0.27 W m ?2 ,或大约瞬时DRF的4%。 与传统方法相比,MEVA还提高了TOA处在0.3至2.5μm之间的输出太阳通量的精度,超过60 W m ?2 (对于白杨3表面)和气溶胶DRF超过10 W m ?2 (对于干草)。特别是,对于亚马逊植被类型,MEVA可以在0.3的光谱范围内提高每日平均气溶胶辐射强迫的精度。在赤道处的赤道处达到2.5μm,约为3.7 W m ?2 。这些改进表明,MEVA可以为植被区域的区域气候研究做出贡献,并可以帮助改进基于遥感的气候过程和气候变化研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号