...
首页> 外文期刊>Atmospheric Measurement Techniques >Depolarization calibration and measurements using the CANDAC Rayleigh–Mie–Raman lidar at Eureka, Canada
【24h】

Depolarization calibration and measurements using the CANDAC Rayleigh–Mie–Raman lidar at Eureka, Canada

机译:使用加拿大尤里卡(Eureka)的CANDAC Rayleigh–Mie–Raman激光雷达进行去极化校准和测量

获取原文
           

摘要

The Canadian Network for the Detection of Atmospheric Change (CANDAC) Rayleigh–Mie–Raman lidar (CRL) at Eureka, Nunavut, has measured tropospheric clouds, aerosols, and water vapour since 2007. In remote and meteorologically significant locations, such as the Canadian High Arctic, the ability to add new measurement capability to an existing well-tested facility is extremely valuable. In 2010, linear depolarization 532?nm measurement hardware was installed in the lidar's receiver. To minimize disruption in the existing lidar channels and to preserve their existing characterization so far as is possible, the depolarization hardware was placed near the end of the receiver cascade. The upstream optics already in place were not optimized for preserving the polarization of received light. Calibrations and Mueller matrix calculations are used to determine and mitigate the contribution of these upstream optics on the depolarization measurements. The results show that with appropriate calibration, indications of cloud particle phase (ice vs. water) through the use of the depolarization parameter are now possible to a precision of ±0.05 absolute uncertainty (?≤?10?% relative uncertainty) within clouds at time and altitude resolutions of 5?min and 37.5?m respectively, with higher precision and higher resolution possible in select cases. The uncertainty is somewhat larger outside of clouds at the same altitude, typically with absolute uncertainty ?≤?0.1. Monitoring changes in Arctic cloud composition, including particle phase, is essential for an improved understanding of the changing climate locally and globally.
机译:自2007年以来,位于努纳武特州尤里卡市的加拿大大气变化探测网络(CANDAC)瑞利-米-拉曼激光雷达(CRL)已测量了对流层云,气溶胶和水蒸气。在偏远和气象显着的地区,例如加拿大高北极地区,为现有的经过良好测试的设施增加新的测量功能的能力非常宝贵。 2010年,在激光雷达的接收器中安装了线性去极化532?nm测量硬件。为了最大程度地减少现有激光雷达通道中的干扰并尽可能保留其现有特性,将去极化硬件放置在接收器级联的末端附近。没有就位的上游光学器件未经过优化以保持接收光的偏振。校准和穆勒矩阵计算用于确定和减轻这些上游光学器件对去极化测量的影响。结果表明,通过适当的校准,现在可以通过使用去极化参数来指示云颗粒的相(冰相对于水),从而在±50°C时云内的绝对不确定度(相对于不确定度≤?≤?10?%)的精度更高。时间和高度分辨率分别为5?min和37.5?m,在某些情况下可能具有更高的精度和更高的分辨率。在相同高度的云层之外,不确定性会更大一些,通常绝对不确定度≤0.1。监测北极云成分(包括粒子相)的变化对于更好地了解本地和全球气候变化至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号