首页> 外文期刊>Atmospheric Chemistry and Physics Discussions >Timescales of secondary organic aerosols to reach equilibrium at various temperatures and relative humidities
【24h】

Timescales of secondary organic aerosols to reach equilibrium at various temperatures and relative humidities

机译:二次有机气溶胶在各种温度和相对湿度下达到平衡的时间尺度

获取原文
           

摘要

Secondary organic aerosols?(SOA) account for a substantial fraction of air particulate matter, and SOA formation is often modeled assuming rapid establishment of gas–particle equilibrium. Here, we estimate the characteristic timescale for SOA to achieve gas–particle equilibrium under a wide range of temperatures and relative humidities using a state-of-the-art kinetic flux model. Equilibration timescales were calculated by varying particle phase state, size, mass loadings, and volatility of organic compounds in open and closed systems. Model simulations suggest that the equilibration timescale for semi-volatile compounds is on the order of seconds or minutes for most conditions in the planetary boundary layer, but it can be longer than 1?h if particles adopt glassy or amorphous solid states with high glass transition temperatures at low relative humidity. In the free troposphere with lower temperatures, it can be longer than hours or days, even at moderate or relatively high relative humidities due to kinetic limitations of bulk diffusion in highly viscous particles. The timescale of partitioning of low-volatile compounds into highly viscous particles is shorter compared to semi-volatile compounds in the closed system, as it is largely determined by condensation sink due to very slow re-evaporation with relatively quick establishment of local equilibrium between the gas phase and the near-surface bulk. The dependence of equilibration timescales on both volatility and bulk diffusivity provides critical insights into thermodynamic or kinetic treatments of SOA partitioning for accurate predictions of gas- and particle-phase concentrations of semi-volatile compounds in regional and global chemical transport models.
机译:二次有机气溶胶(SOA)占了空气颗粒物的很大一部分,并且通常以快速建立气体-颗粒平衡为前提来模拟SOA的形成。在这里,我们使用最新的动态通量模型估算SOA在宽广的温度和相对湿度范围内达到气-粒平衡的特征时间尺度。通过改变颗粒相态,大小,质量负载以及开放和封闭系统中有机化合物的挥发性来计算平衡时标。模型仿真表明,对于大多数情况,在行星边界层中,半挥发性化合物的平衡时间尺度约为秒或分钟,但如果颗粒采用玻璃态或非晶态固态且具有高玻璃化转变态,则平衡时间可能会超过1?h相对湿度低的温度。在自由对流层温度较低的情况下,由于在高粘性颗粒中整体扩散的动力学限制,即使在中等或相对较高的相对湿度下,它也可能比数小时或数天更长。与封闭系统中的半挥发性化合物相比,将低挥发性化合物分配为高粘度颗粒的时间范围更短,因为它主要由冷凝沉确定,这是由于非常缓慢的再蒸发以及相对较快地建立了两相之间的局部平衡所致。气相和近地表物质。平衡时间尺度对挥发性和体积扩散率的依赖性为对SOA分区的热力学或动力学处理提供了重要的见解,以准确预测区域和全球化学传输模型中半挥发性化合物的气相和颗粒相浓度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号