首页> 外文期刊>Atmospheric Chemistry and Physics Discussions >Estimates of Ozone Return Dates from Chemistry-Climate Model Initiative Simulations
【24h】

Estimates of Ozone Return Dates from Chemistry-Climate Model Initiative Simulations

机译:从化学-气候模式倡议模拟中估算臭氧返回日期

获取原文
           

摘要

We analyse simulations performed for the Chemistry-Climate Model Initiative (CCMI) to estimate the return dates of the stratospheric ozone layer from depletion caused by anthropogenic stratospheric chlorine and bromine. We consider a total of 155 simulations from 20 models, including a range of sensitivity studies which examine the impact of climate change on ozone recovery. For the control simulations (unconstrained by nudging towards analysed meteorology) there is a large spread (±20?DU in the global average) in the predictions of the absolute ozone column. Therefore, the model results need to be adjusted for biases against historical data. Also, the interannual variability in the model results need to be smoothed in order to provide a reasonably narrow estimate of the range of ozone return dates. Consistent with previous studies, but here for a Representative Concentration Pathway (RCP) of 6.0, these new CCMI simulations project that global total column ozone will return to 1980 values in 2047 (with a 1-σ uncertainty of 2042–2052). At Southern Hemisphere mid-latitudes column ozone is projected to return to 1980 values in 2046 (2042–2050), and at Northern Hemisphere mid-latitudes in 2034 (2024–2044). In the polar regions, the return dates are 2062 (2055–2066) in the Antarctic in October and 2035 (2025–2040) in the Arctic in March. The earlier return dates in the NH reflect the larger sensitivity to dynamical changes. Our estimates of return dates are later than those presented in the 2014 Ozone Assessment by approximately 5–15 years, depending on the region. In the tropics only around half the models predict a return to 1980 values, at around 2040, while the other half do not reach this value. All models show a negative trend in tropical total column ozone towards the end of the 21st century. The CCMI models generally agree in their simulation of the time evolution of stratospheric chlorine, which is the main driver of ozone loss and recovery. However, there are a few outliers which show that the multi-model mean results for ozone recovery are not as tightly constrained as possible. Throughout the stratosphere the spread of ozone return dates to 1980 values between models tends to correlate with the spread of the return of inorganic chlorine to 1980 values. In the upper stratosphere, greenhouse gas-induced cooling speeds up the return by about 10–20 years. In the lower stratosphere, and for the column, there is a more direct link in the timing of the return dates, especially for the large Antarctic depletion. Comparisons of total column ozone between the models is affected by different predictions of the evolution of tropospheric ozone within the same scenario, presumably due to differing treatment of tropospheric chemistry. Therefore, for many scenarios, clear conclusions can only be drawn for stratospheric ozone columns rather than the total column. As noted by previous studies, the timing of ozone recovery is affected by the evolution of N2O and CH4. However, the effect in the simulations analysed here is small and at the limit of detectability from the few realisations available for these experiments compared to internal model variability. The large increase in N2O given in RCP 6.0 extends the ozone return globally by ~?15 years relative to N2O fixed at 1960 abundances, mainly because it allows tropical column ozone to be depleted. The effect in extratropical latitudes is much smaller. The large increase in CH4 given in the RCP 8.5 scenario compared to RCP 6.0 also changes ozone return by ~?15 years, again mainly through its impact in the tropics. For future assessments of single forcing or combined effects of CO2, CH4, and N2O on the stratospheric column ozone return dates, this work suggests that is more important to have multi-member (at least 3) ensembles for each scenario from each established participating model, rather than a large number of individual models.
机译:我们分析了对化学-气候模式倡议(CCMI)进行的模拟,以从人为的平流层氯和溴引起的消耗中估算平流层臭氧层的返回日期。我们考虑了来自20个模型的总共155个模拟,包括一系列敏感性研究,这些研究研究了气候变化对臭氧回收的影响。对于控制模拟(不受对气象学分析的限制),绝对臭氧柱的预测值存在较大差异(全球平均值为±20?DU)。因此,需要对模型结果进行调整,以消除对历史数据的偏倚。同样,需要对模型结果中的年际变化进行平滑处理,以提供对臭氧返回日期范围的合理狭窄估计。与以前的研究一致,但在此处的“代表浓度路径”(RCP)为6.0时,这些新的CCMI模拟预测,到2047年,全球总柱臭氧将恢复到1980年的值(1-σ不确定性为2042–2052)。在南半球中纬度地区,预计到2046年(2042-2050)臭氧将恢复到1980年的值,而在北半球中纬度地区,2034年(2024-2044年)的臭氧将恢复到1980年的水平。在极地地区,十月的返回日期是南极的2062(2055-2066),三月是北极的2035(2025-2040)。 NH中较早的归还日期反映了对动态变化的更大敏感性。根据地区的不同,我们对返回日期的估计要比2014年《臭氧评估》中给出的估计要晚大约5到15年。在热带地区,只有大约一半的模型预测到2040年左右恢复到1980年的值,而另一半则没有达到该值。到21世纪末,所有模型都显示出热带总柱臭氧呈负趋势。 CCMI模型通常在模拟平流层氯的时间演变过程中是一致的,平流层氯是臭氧损失和恢复的主要驱动力。但是,有一些离群值表明,臭氧回收的多模型平均结果没有受到尽可能严格的限制。在整个平流层中,各模型之间的臭氧返回日期至1980年值的分布往往与无机氯返回至1980年值的分布相关。在平流层上部,由温室气体引起的冷却将返回速度加快了约10-20年。在平流层下部和该柱,在返回日期的时间安排上有更直接的联系,尤其是对于南极耗竭大的地区。在相同情况下,对流层臭氧演变的不同预测会影响模型之间总柱臭氧的比较,这可能是由于对流层化学处理方式不同。因此,在许多情况下,只能对平流层臭氧塔而不是总塔得出明确的结论。如先前的研究所述,臭氧恢复的时间受N2O和CH4的释放影响。但是,与内部模型可变性相比,此处分析的模拟中的影响很小,并且在可用于这些实验的少数实现方式的可检测性范围内。与固定在1960年的N2O相比,RCP 6.0中N2O的大幅增加使全球的臭氧返回量延长了约15年,这主要是因为它使热带柱状臭氧得以消耗。在温带纬度的影响要小得多。与RCP 6.0相比,RCP 8.5情景中CH4的大幅增加也使臭氧的返还时间改变了约15年,这再次主要是由于其对热带的影响。为了进一步评估CO2,CH4和N2O对平流层柱臭氧返回日期的单一强迫作用或综合影响,这项工作表明,对于每个已建立的参与模型的每种情况,都需要多成员(至少3个)合奏更为重要。 ,而不是大量的单个模型。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号