首页> 外文期刊>Atmospheric Chemistry and Physics Discussions >Estimates of ozone return dates from Chemistry-Climate Model Initiative simulations
【24h】

Estimates of ozone return dates from Chemistry-Climate Model Initiative simulations

机译:根据化学气候模型倡议模拟估算的臭氧返回日期

获取原文
           

摘要

We analyse simulations performed for the Chemistry-Climate Model Initiative (CCMI) to estimate the return dates of the stratospheric ozone layer from depletion caused by anthropogenic stratospheric chlorine and bromine. We consider a total of 155 simulations from 20 models, including a range of sensitivity studies which examine the impact of climate change on ozone recovery. For the control simulations (unconstrained by nudging towards analysed meteorology) there is a large spread (±20 DU in the global average) in the predictions of the absolute ozone column. Therefore, the model results need to be adjusted for biases against historical data. Also, the interannual variability in the model results need to be smoothed in order to provide a reasonably narrow estimate of the range of ozone return dates. Consistent with previous studies, but here for a Representative Concentration Pathway (RCP) of 6.0, these new CCMI simulations project that global total column ozone will return to 1980 values in 2049 (with a 1σ uncertainty of 2043–2055). At Southern Hemisphere mid-latitudes column ozone is projected to return to 1980 values in 2045 (2039–2050), and at Northern Hemisphere mid-latitudes in 2032 (2020–2044). In the polar regions, the return dates are 2060 (2055–2066) in the Antarctic in October and 2034 (2025–2043) in the Arctic in March. The earlier return dates in the Northern Hemisphere reflect the larger sensitivity to dynamical changes. Our estimates of return dates are later than those presented in the 2014 Ozone Assessment by approximately 5–17?years, depending on the region, with the previous best estimates often falling outside of our uncertainty range. In the tropics only around half the models predict a return of ozone to 1980 values, around 2040, while the other half do not reach the 1980 value. All models show a negative trend in tropical total column ozone towards the end of the 21st century. The CCMI models generally agree in their simulation of the time evolution of stratospheric chlorine and bromine, which are the main drivers of ozone loss and recovery. However, there are a few outliers which show that the multi-model mean results for ozone recovery are not as tightly constrained as possible. Throughout the stratosphere the spread of ozone return dates to 1980 values between models tends to correlate with the spread of the return of inorganic chlorine to 1980 values. In the upper stratosphere, greenhouse gas-induced cooling speeds up the return by about 10–20?years. In the lower stratosphere, and for the column, there is a more direct link in the timing of the return dates of ozone and chlorine, especially for the large Antarctic depletion. Comparisons of total column ozone between the models is affected by different predictions of the evolution of tropospheric ozone within the same scenario, presumably due to differing treatment of tropospheric chemistry. Therefore, for many scenarios, clear conclusions can only be drawn for stratospheric ozone columns rather than the total column. As noted by previous studies, the timing of ozone recovery is affected by the evolution of Nsub2/subO and CHsub4/sub. However, quantifying the effect in the simulations analysed here is limited by the few realisations available for these experiments compared to internal model variability. The large increase in Nsub2/subO given in RCP 6.0 extends the ozone return globally by ~ 15 years relative to Nsub2/subO fixed at 1960 abundances, mainly because it allows tropical column ozone to be depleted. The effect in extratropical latitudes is much smaller. The large increase in CHsub4/sub given in the RCP 8.5 scenario compared to RCP 6.0 also lengthens ozone return by ~ 15?years, again mainly through its impact in the tropics. Overall, our estimates of ozone return dates are uncertain due to both uncertainties in future scenarios, in particular those of greenhouse gases, and uncertainties in models. The scenario uncertainty is small in the short term but increases with time, and becomes large by the end of the century. There are still some model–model differences related to well-known processes which affect ozone recovery. Efforts need to continue to ensure that models used for assessment purposes accurately represent stratospheric chemistry and the prescribed scenarios of ozone-depleting substances, and only those models are used to calculate return dates. For future assessments of single forcing or combined effects of COsub2/sub, CHsub4/sub, and Nsub2/subO on the stratospheric column ozone return dates, this work suggests that it is more important to have multi-member (at least three) ensembles for each scenario from every established participating model, rather than a large number of individual models.
机译:>我们分析了针对化学-气候模式倡议(CCMI)进行的模拟,以从人为的平流层氯和溴造成的消耗中估算平流层臭氧层的返回日期。我们考虑了来自20个模型的总共155个模拟,包括一系列敏感性研究,这些研究研究了气候变化对臭氧回收的影响。对于控制模拟(不受偏向于分析气象的约束),绝对臭氧柱的预测值存在较大差异(全球平均值为±20 DU)。因此,需要对模型结果进行调整,以消除对历史数据的偏倚。同样,需要对模型结果中的年际变化进行平滑处理,以提供对臭氧返回日期范围的合理狭窄估计。与以前的研究一致,但此处的“代表性浓度途径”(RCP)为6.0,这些新的CCMI模拟预测,全球总柱臭氧将在2049年恢复到1980年的值(1σ不确定性2043-2055)。在南半球中纬度地区,预计到2045年(2039-2050年)臭氧将恢复到1980年的值,而在北半球中纬度地区,2032年(2020-2044年)将恢复臭氧值。在极地地区,返回日期分别是十月在南极的2060年(2055-2066)和三月在北极的2034年(2025-2043)。北半球的较早返回日期反映了对动态变化的更大敏感性。根据区域的不同,我们对返回日期的估计要比2014年《臭氧评估》中给出的估计要晚大约5-17年,而以前的最佳估计往往不在我们的不确定性范围之内。在热带地区,只有大约一半的模型预测臭氧在2040年左右恢复到1980年的值,而另一半则没有达到1980年的值。到21世纪末,所有模型都显示出热带总柱臭氧呈负趋势。 CCMI模型在模拟平流层氯和溴的时间演变过程中普遍认同,而平流层氯和溴是臭氧损失和恢复的主要驱动力。但是,有一些离群值表明,臭氧回收的多模型平均结果没有受到尽可能严格的限制。在整个平流层中,各模型之间的臭氧返回日期至1980年值的分布往往与无机氯返回至1980年值的分布相关。在高空平流层中,温室气体引起的冷却将回流速度提高了约10-20年。在平流层下部和该柱,臭氧和氯的返回日期的时间安排有更直接的联系,特别是对于南极的大消耗。在相同情况下,对流层臭氧演变的不同预测会影响模型之间总柱臭氧的比较,这可能是由于对流层化学处理方式不同。因此,在许多情况下,只能对平流层臭氧塔而不是总塔得出明确的结论。如先前的研究所述,臭氧恢复的时间受N 2 O和CH 4 的演化影响。但是,与内部模型可变性相比,在这些分析中量化量化效果受这些实验可用的几种实现的限制。相对于固定在1960年的N 2 O,RCP 6.0中N 2 O的大幅增加使全球臭氧返回量延长了15年左右。臭氧被消耗掉。在温带纬度的影响要小得多。与RCP 6.0相比,RCP 8.5方案中CH 4 的大幅增加也将臭氧返回时间延长了约15年,主要是由于其对热带的影响。总体而言,由于未来情景中的不确定性,尤其是温室气体的不确定性,以及模型的不确定性,我们对臭氧返回日期的估计是不确定的。场景不确定性在短期内很小,但随着时间的推移而增加,到本世纪末变得更大。仍然存在与影响臭氧回收率的已知过程相关的某些模型之间的差异。需要继续努力确保用于评估目的的模型准确地代表平流层化学和规定的消耗臭氧层物质的情景,并且仅使用那些模型来计算返回日期。为了进一步评估CO 2 ,CH 4 和N 2 O在平流层柱臭氧返回日期上的单作用力或联合作用,这项工作表明,每个已建立的参与模型中的每个方案都具有多成员(至少三个)集合,而不是大量的单个模型,这一点更为重要。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号