首页> 外文期刊>Atmospheric Chemistry and Physics Discussions >Arctic climate response to forcing from light-absorbing particles in snow and sea ice in CESM
【24h】

Arctic climate response to forcing from light-absorbing particles in snow and sea ice in CESM

机译:CESM中北极气候对冰雪中吸光颗粒强迫的响应

获取原文
           

摘要

pstrongAbstract./strong The presence of light-absorbing aerosol particles deposited on arctic snow and sea ice influences the surface albedo, causing greater shortwave absorption, warming, and loss of snow and sea ice, lowering the albedo further. The Community Earth System Model version 1 (CESM1) now includes the radiative effects of light-absorbing particles in snow on land and sea ice and in sea ice itself. We investigate the model response to the deposition of black carbon and dust to both snow and sea ice. For these purposes we employ a slab ocean version of CESM1, using the Community Atmosphere Model version 4 (CAM4), run to equilibrium for year 2000 levels of COsub2/sub and fixed aerosol deposition. We construct experiments with and without aerosol deposition, with dust or black carbon deposition alone, and with varying quantities of black carbon and dust to approximate year 1850 and 2000 deposition fluxes. The year 2000 deposition fluxes of both dust and black carbon cause 1a??2 ?°C of surface warming over large areas of the Arctic Ocean and sub-Arctic seas in autumn and winter and in patches of Northern land in every season. Atmospheric circulation changes are a key component of the surface-warming pattern. Arctic sea ice thins by on average about 30 cm. Simulations with year 1850 aerosol deposition are not substantially different from those with year 2000 deposition, given constant levels of COsub2/sub. The climatic impact of particulate impurities deposited over land exceeds that of particles deposited over sea ice. Even the surface warming over the sea ice and sea ice thinning depends more upon light-absorbing particles deposited over land. For COsub2/sub doubled relative to year 2000 levels, the climate impact of particulate impurities in snow and sea ice is substantially lower than for the year 2000 equilibrium simulation./p.
机译:> >摘要。沉积在北极雪和海冰上的吸气气溶胶颗粒的存在会影响表面反照率,导致更大的短波吸收,变暖以及雪和海冰的损失,从而降低反照率。进一步。社区地球系统模型版本1(CESM1)现在包括雪中的吸光颗粒对陆地和海冰以及海冰本身的辐射影响。我们调查了模型对黑碳和灰尘对雪和海冰的沉积的响应。为此,我们使用了CESM1的平板海洋版本,并使用了社区大气模型版本4(CAM4),使2000年CO 2 的水平达到平衡并实现了固定的气溶胶沉积。我们构建有或没有气溶胶沉积的实验,仅包含灰尘或黑碳的沉积,并使用不同数量的黑碳和粉尘进行实验,大约可追溯到1850年和2000年。 2000年,粉尘和黑炭的沉积通量在秋季和冬季以及每个季节在北部陆地的大部分地区引起北冰洋和北冰洋大面积的表面变暖1a ?? 2?°C。大气环流变化是表面变暖模式的关键组成部分。北极海冰平均变薄约30厘米。在CO 2 恒定的情况下,1850年气溶胶沉积的模拟与2000年沉积的模拟没有太大不同。沉积在陆地上的颗粒杂质的气候影响超过了沉积在海冰上的颗粒的气候影响。甚至海冰表面变暖和海冰变薄也更多地取决于沉积在陆地上的吸光颗粒。对于相对于2000年水平增加一倍的CO 2 ,雪和海冰中颗粒杂质对气候的影响远低于2000年的平衡模拟。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号