首页> 外文期刊>Atmospheric Chemistry and Physics Discussions >Comparing multiple model-derived aerosol optical properties to spatially collocated ground-based and satellite measurements
【24h】

Comparing multiple model-derived aerosol optical properties to spatially collocated ground-based and satellite measurements

机译:将多个模型得出的气溶胶光学特性与空间并置的地面和卫星测量结果进行比较

获取原文
           

摘要

pstrongAbstract./strong Anthropogenic aerosols are a key factor governing Earth's climate and play a central role in human-caused climate change. However, because of aerosols' complex physical, optical, and dynamical properties, aerosols are one of the most uncertain aspects of climate modeling. Fortunately, aerosol measurement networks over the past few decades have led to the establishment of long-term observations for numerous locations worldwide. Further, the availability of datasets from several different measurement techniques (such as ground-based and satellite instruments) can help scientists increasingly improve modeling efforts. This study explores the value of evaluating several model-simulated aerosol properties with data from spatially collocated instruments. We compare aerosol optical depth (AOD; total, scattering, and absorption), single-scattering albedo (SSA), ??ngstr??m exponent (i?±/i), and extinction vertical profiles in two prominent global climate models (Geophysical Fluid Dynamics Laboratory, GFDL, CM2.1 and CM3) to seasonal observations from collocated instruments (AErosol RObotic NETwork, AERONET, and Clouda??Aerosol Lidar with Orthogonal Polarization, CALIOP) at seven polluted and biomass burning regions worldwide. We find that a multi-parameter evaluation provides key insights on model biases, data from collocated instruments can reveal underlying aerosol-governing physics, column properties wash out important vertical distinctions, and qimproved/q models does not mean all aspects are improved. We conclude that it is important to make use of all available data (parameters and instruments) when evaluating aerosol properties derived by models./p.
机译:> >摘要。人为气溶胶是控制地球气候的关键因素,在人为引起的气候变化中发挥着核心作用。但是,由于气溶胶具有复杂的物理,光学和动力学特性,因此气溶胶是气候建模最不确定的方面之一。幸运的是,在过去的几十年中,气溶胶测量网络已导致在全球许多地方建立长期观测。此外,来自几种不同测量技术(例如地面和卫星仪器)的数据集的可用性可以帮助科学家越来越多地改善建模工作。这项研究探索了使用来自空间并置仪器的数据评估几种模型模拟的气溶胶特性的价值。我们比较了两个突出的气溶胶光学深度(AOD;总,散射和吸收),单散射反照率(SSA),ngstr ?? m指数(?±)和消光垂直剖面全球气候模型(地球物理流体动力学实验室,GFDL,CM2.1和CM3)到在七个污染和生物质燃烧区域的并置仪器(AErosol机器人网络,AERONET和Clouda ??带有正交极化的气溶胶激光雷达,CALIOP)进行季节性观测。我们发现,多参数评估提供了关于模型偏差的关键见解,来自并置仪器的数据可以揭示潜在的气溶胶控制物理特性,色谱柱特性冲刷了重要的垂直差异,并且改进的模型并不意味着所有方面得到改善。我们得出结论,在评估由模型得出的气溶胶特性时,必须利用所有可用的数据(参数和仪器)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号