首页> 外文期刊>Atmospheric Chemistry and Physics Discussions >Lagrangian analysis of microphysical and chemical processes in the Antarctic stratosphere: a case study
【24h】

Lagrangian analysis of microphysical and chemical processes in the Antarctic stratosphere: a case study

机译:拉格朗日分析南极平流层的微物理和化学过程:一个案例研究

获取原文
           

摘要

pstrongAbstract./strong We investigated chemical and microphysical processes in the late winter in the Antarctic lower stratosphere, after the first chlorine activation and initial ozone depletion. We focused on a time interval when both further chlorine activation and ozone loss, but also chlorine deactivation, occur. brbr We performed a comprehensive Lagrangian analysis to simulate the evolution of an air mass along a 10-day trajectory, coupling a detailed microphysical box model to a chemistry model. Model results have been compared with in situ and remote sensing measurements of particles and ozone at the start and end points of the trajectory, and satellite measurements of key chemical species and clouds along it. brbr Different model runs have been performed to understand the relative role of solid and liquid polar stratospheric cloud (PSC) particles for the heterogeneous chemistry, and for the denitrification caused by particle sedimentation. According to model results, under the conditions investigated, ozone depletion is not affected significantly by the presence of nitric acid trihydrate (NAT) particles, as the observed depletion rate can equally well be reproduced by heterogeneous chemistry on cold liquid aerosol, with a surface area density close to background values. brbr Under the conditions investigated, the impact of denitrification is important for the abundances of chlorine reservoirs after PSC evaporation, thus stressing the need to use appropriate microphysical models in the simulation of chlorine deactivation. We found that the effect of particle sedimentation and denitrification on the amount of ozone depletion is rather small in the case investigated. In the first part of the analyzed period, when a PSC was present in the air mass, sedimentation led to a smaller available particle surface area and less chlorine activation, and thus less ozone depletion. After the PSC evaporation, in the last 3 days of the simulation, denitrification increases ozone loss by hampering chlorine deactivation./p.
机译:> >摘要。我们调查了南极平流层下层冬季初次激活氯气和初始臭氧消耗后的化学和微物理过程。我们着眼于一个时间间隔,在该时间间隔内会发生进一步的氯活化和臭氧损失,同时还会发生氯失活。 我们进行了全面的拉格朗日分析,以模拟沿10天轨迹的空气质量演变,并将详细的微物理盒模型与化学模型耦合。已将模型结果与轨迹起点和终点处的粒子和臭氧的原位和遥感测量结果以及沿途的关键化学物质和云的卫星测量结果进行了比较。 为了了解固态和液态平流层云(PSC)颗粒对于非均相化学以及颗粒沉降引起的反硝化的相对作用,已经进行了不同的模型运行。根据模型结果,在所研究的条件下,三水硝酸(NAT)颗粒的存在不会显着影响臭氧层的消耗,因为所观察到的消耗率同样可以通过异质化学在具有表面积的冷液体气溶胶上很好地再现。密度接近背景值。 在所研究的条件下,反硝化的影响对于PSC蒸发后的大量氯气储藏非常重要,因此强调在模拟氯气失活过程中需要使用适当的微观模型。我们发现,在所研究的情况下,颗粒沉降和反硝化对臭氧消耗量的影响很小。在分析期间的第一部分中,当气团中存在PSC时,沉淀会导致较小的可用颗粒表面积和较少的氯活化,从而减少臭氧消耗。 PSC蒸发后,在模拟的最后三天,反硝化会阻碍氯的失活,从而增加臭氧的损失。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号