...
首页> 外文期刊>Atmospheric chemistry and physics >Actinic flux and photolysis in water droplets: Mie calculations and geometrical optics limit
【24h】

Actinic flux and photolysis in water droplets: Mie calculations and geometrical optics limit

机译:水滴中的光化通量和光解:Mie计算和几何光学极限

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Photolysis of water-soluble components inside cloud dropletsby ultraviolet/visible radiation may play an important role inatmospheric chemistry. Two earlier studies have suggested that theactinic flux and hence the photolysis frequency within sphericaldroplets is enhanced relative to that in the surrounding air, but havegiven different values for this enhancement. Here, we reconcile thesediscrepancies by noting slight errors in both studies that, whencorrected, lead to consistent results. Madronich (1987) examined thegeometric (large droplet) limit and concluded that refraction leads toan enhancement factor, averaged over all incident directions, of 1.56.However, the physically relevant quantity is the enhancement of theaverage actinic flux (rather than the average enhancement factor)which we show here to be 1.26 in the geometric limit. Ruggaber etal. (1997) used Mie theory to derive energy densityenhancements slightly larger than 2 for typical droplet sizes, andapplied these directly to the calculation of photolysis rates.However, the physically relevant quantity is the actinic flux (rather thanthe energy density) which is obtained by dividing the energy density bythe refractive index of water, 1.33. Thus, the Mie-predictedenhancement for typical cloud droplet sizes is in the range 1.5, onlycoincidentally in agreement with the value originally given byMadronich. We also investigated the influence of resonances in theactinic flux enhancement. These narrow spikes which are resolved onlyby very high resolution calculations are orders of magnitude higherthan the intermediate values but contribute only little to the actinicflux enhancement when averaged over droplet size distributions. Finally,a table is provided which may be used to obtain the actinic fluxenhancement for the photolysis of any dissolved species.
机译:紫外线/可见辐射对云滴内部水溶性成分的光解作用可能在大气化学中起重要作用。两项较早的研究表明,与周围空气相比,球形液滴内的光化通量以及光解频率均得到了增强,但为此提高了不同的数值。在这里,我们通过注意两项研究中的细微错误来调和这些差异,这些错误在纠正后会产生一致的结果。 Madronich(1987)研究了几何(大液滴)极限,得出的结论是折射导致​​增强因子在所有入射方向上平均为1.56,但是物理上相关的量是平均光化通量的增强(而不是平均增强因子)我们在此处显示的几何极限为1.26。 Ruggaber等。 (1997年)使用Mie理论推导典型液滴尺寸的能量密度增强值略大于2,并将其直接应用于光解速率的计算。但是,物理上相关的量是光化通量(而不是能量密度),通过除以通过水的折射率得到的能量密度为1.33。因此,典型的云滴尺寸的Mie预测增强值在1.5的范围内,恰好与Madronich最初给出的值一致。我们还研究了共振对光化通量增强的影响。这些狭窄的尖峰只能通过非常高分辨率的计算才能解决,比中间值高出几个数量级,但是当对液滴尺寸分布进行平均时,仅对极少的猕猴桃磁通量增强产生贡献。最后,提供了一张表,该表可用于获得任何溶解物质的光解的光化通量增强。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号