首页> 外文期刊>Atmospheric Measurement Techniques >What do satellite backscatter ultraviolet and visible spectrometers see over snow and ice? A study of clouds and ozone using the A-train
【24h】

What do satellite backscatter ultraviolet and visible spectrometers see over snow and ice? A study of clouds and ozone using the A-train

机译:卫星后向散射紫外和可见光谱仪在冰雪上会看到什么?使用A火车研究云和臭氧

获取原文
           

摘要

In this paper, we examine how clouds over snow and ice affect ozone absorption and how these effects may be accounted for in satellite retrieval algorithms. Over snow and ice, the Aura Ozone Monitoring Instrument (OMI) Raman cloud pressure algorithm derives an effective scene pressure. When this scene pressure differs appreciably from the surface pressure, the difference is assumed to be caused by a cloud that is shielding atmospheric absorption and scattering below cloud-top from satellite view. A pressure difference of 100 hPa is used as a crude threshold for the detection of clouds that significantly shield tropospheric ozone absorption. Combining the OMI effective scene pressure and the Aqua MODerate-resolution Imaging Spectroradiometer (MODIS) cloud top pressure, we can distinguish between shielding and non-shielding clouds. To evaluate this approach, we performed radiative transfer simulations under various observing conditions. Using cloud vertical extinction profiles from the CloudSat Cloud Profiling Radar (CPR), we find that clouds over a bright surface can produce significant shielding (i.e., a reduction in the sensitivity of the top-of-the-atmosphere radiance to ozone absorption below the clouds). The amount of shielding provided by clouds depends upon the geometry (solar and satellite zenith angles) and the surface albedo as well as cloud optical thickness. We also use CloudSat observations to qualitatively evaluate our approach. The CloudSat, Aqua, and Aura satellites fly in an afternoon polar orbit constellation with ground overpass times within 15 min of each other. The current Total Ozone Mapping Spectrometer (TOMS) total column ozone algorithm (that has also been applied to the OMI) assumes no clouds over snow and ice. This assumption leads to errors in the retrieved ozone column. We show that the use of OMI effective scene pressures over snow and ice reduces these errors and leads to a more homogeneous spatial distribution of the retrieved total ozone.
机译:在本文中,我们研究了雪和冰上的云如何影响臭氧吸收以及如何在卫星检索算法中解释这些影响。在冰雪上,Aura臭氧监测仪(OMI)拉曼云压力算法可得出有效的场景压力。当该场景压力与表面压力明显不同时,可以认为该差异是由云造成的,该云遮挡了卫星视图从云顶以下吸收大气并造成散射。将100 hPa的压差用作检测显着屏蔽对流层臭氧吸收的云的粗略阈值。结合OMI有效场景压力和Aqua MOD分辨率成像光谱仪(MODIS)的云顶压力,我们可以区分屏蔽云和非屏蔽云。观察条件。使用CloudSat云廓线雷达(CPR)的云垂直消光剖面,我们发现明亮表面上的云可以产生显着的屏蔽作用(即,降低大气顶辐射对臭氧吸收的敏感度低于大气辐射)。云)。云提供的屏蔽量取决于几何形状(太阳和卫星天顶角)和表面反照率以及云的光学厚度。我们还使用CloudSat观测来定性评估我们的方法。 CloudSat,Aqua和Aura卫星在一个下午的极地轨道星座中飞行,彼此之间的地面越过时间在15分钟之内。 当前的总臭氧图谱仪(TOMS)总柱臭氧算法应用于OMI)假定在冰雪上没有云。这种假设导致在回收的臭氧塔中产生错误。我们表明,使用OMI在冰雪上的有效场景压力可以减少这些误差,并导致所回收的总臭氧的空间分布更加均匀。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号