首页> 外文期刊>Atmospheric chemistry and physics >Understanding mercury oxidation and air–snow exchange on the East Antarctic Plateau: a modeling study
【24h】

Understanding mercury oxidation and air–snow exchange on the East Antarctic Plateau: a modeling study

机译:了解南极东部高原的汞氧化和空气-雪交换:一项模型研究

获取原文
           

摘要

Distinct diurnal and seasonal variations of mercury (Hg) have been observed in near-surface air at Concordia Station on the East Antarctic Plateau, but the processes controlling these characteristics are not well understood. Here, we use a box model to interpret the Hgsup0/sup (gaseous elemental mercury) measurements in thes year 2013. The model includes atmospheric Hgsup0/sup oxidation (by OH, Osub3/sub , or bromine), surface snow HgsupII/sup (oxidized mercury) reduction, and air–snow exchange, and is driven by meteorological fields from a regional climate model. The simulations suggest that a photochemically driven mercury diurnal cycle occurs at the air–snow interface in austral summer. The fast oxidation of Hgsup0/sup in summer may be provided by a two-step bromine-initiated scheme, which is favored by low temperature and high nitrogen oxides at Concordia. The summertime diurnal variations of Hgsup0/sup (peaking during daytime) may be confined within several tens of meters above the snow surface and affected by changing mixed layer depths. Snow re-emission of Hgsup0/sup is mainly driven by photoreduction of snow HgsupII/sup in summer. Intermittent warming events and a hypothesized reduction of HgsupII/sup occurring in snow in the dark may be important processes controlling the mercury variations in the non-summer period, although their relative importance is uncertain. The Br-initiated oxidation of Hgsup0/sup is expected to be slower at Summit Station in Greenland than at Concordia (due to their difference in temperature and levels of nitrogen oxides and ozone), which may contribute to the observed differences in the summertime diurnal variations of Hgsup0/sup between these two polar inland stations.
机译:在南极东部高原的Concordia站的近地表空气中,汞(Hg)的昼夜变化明显,但控制这些特性的过程尚不清楚。在这里,我们使用盒子模型解释2013年Hg 0 (气态元素汞)的测量值。该模型包括大气中Hg 0 的氧化(通过OH,O < sub> 3 或溴),表雪Hg II (氧化汞)的还原以及空气与雪的交换,这是由区域气候模型中的气象场驱动的。模拟表明,在南方夏季,空气-雪界面发生了光化学驱动的汞昼夜循环。在夏季,Hg 0 的快速氧化可以通过两步溴引发的方法来实现,这在Concordia的低温和高氮氧化物的帮助下进行。夏季Hg 0 的日变化(白天达到峰值)可能被限制在雪面以上数十米之内,并且受混合层深度变化的影响。 Hg 0 的降雪主要是由夏季降雪Hg II 引起的。间歇性变暖事件和假设的黑暗中Hg II 的减少可能是控制非夏季时期汞变化的重要过程,尽管其相对重要性尚不确定。溴引发的Hg 0 的氧化在格陵兰的Summit站比Concordia慢(由于它们的温度以及氮氧化物和臭氧水平的差异),这可能有助于观察到两个极地内陆站之间Hg 0 夏季日变化的差异

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号