...
首页> 外文期刊>Atmospheric Chemistry and Physics Discussions >Understanding mercury oxidation and air–snow exchange on the East Antarctic Plateau: a modeling study
【24h】

Understanding mercury oxidation and air–snow exchange on the East Antarctic Plateau: a modeling study

机译:了解东南南极高原上的汞氧化和空调交流:建模研究

获取原文
           

摘要

Distinct diurnal and seasonal variations of mercury (Hg) have been observed in near-surface air at Concordia Station on the East Antarctic Plateau, but the processes controlling these characteristics are not well understood. Here, we use a box model to interpret the Hg0 (gaseous elemental mercury) measurements in thes year 2013. The model includes atmospheric Hg0 oxidation (by OH, O3, or bromine), surface snow HgII (oxidized mercury) reduction, and air–snow exchange, and is driven by meteorological fields from a regional climate model. The simulations suggest that a photochemically driven mercury diurnal cycle occurs at the air–snow interface in austral summer. The fast oxidation of Hg0 in summer may be provided by a two-step bromine-initiated scheme, which is favored by low temperature and high nitrogen oxides at Concordia. The summertime diurnal variations of Hg0 (peaking during daytime) may be confined within several tens of meters above the snow surface and affected by changing mixed layer depths. Snow re-emission of Hg0 is mainly driven by photoreduction of snow HgII in summer. Intermittent warming events and a hypothesized reduction of HgII occurring in snow in the dark may be important processes controlling the mercury variations in the non-summer period, although their relative importance is uncertain. The Br-initiated oxidation of Hg0 is expected to be slower at Summit Station in Greenland than at Concordia (due to their difference in temperature and levels of nitrogen oxides and ozone), which may contribute to the observed differences in the summertime diurnal variations of Hg0 between these two polar inland stations.
机译:在东南极高原上的近地表空气中,在近地表空中观察到汞(HG)的不同昼夜变化,但控制这些特征的过程尚不清楚。在这里,我们使用一个盒式模型来解释2013年的HG0(气态元素汞)测量。该模型包括大气HG0氧化(通过OH,O3或溴),表面雪HGII(氧化汞)减少和空气 - 雪交换,由区域气候模型的气象领域驱动。模拟表明,澳大利亚夏季的空雪界面发生了光化学驱动的汞昼夜循环。夏季HG0的快速氧化可以通过两步溴引发方案提供,该方案是由Concordia的低温和高氮氧化物的青睐。 HG0的夏季昼夜变化(白天期间峰值)可以限制在雪表面上方的几十米范围内,并通过改变混合层深度的影响。 HG0的雪重融发主要是夏季雪HGII的拍摄。在黑暗中间歇性的变暖事件和雪中的HGII的假设减少可能是控制非夏季期间的汞变化的重要过程,尽管它们的相对重要性是不确定的。 HG0的BR-Biged氧化预计在格陵兰岛的峰会站点慢于Concordia(由于它们的温度和氮氧化物水平和臭氧水平的差异),这可能有助于观察到的HG0夏季昼夜变化的差异在这两个北极地网站之间。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号