首页> 外文期刊>Atmospheric Chemistry and Physics Discussions >Experimental budgets of OH, HOsub2/sub, and ROsub2/sub radicals and implications for ozone formation in the Pearl River Delta in China 2014
【24h】

Experimental budgets of OH, HOsub2/sub, and ROsub2/sub radicals and implications for ozone formation in the Pearl River Delta in China 2014

机译:2014年珠江三角洲OH,HO 2 和RO 2 自由基的实验预算及其对臭氧形成的影响

获取原文
获取外文期刊封面目录资料

摘要

Hydroxyl (OH) and peroxy radicals ( HOsub2/sub and ROsub2/sub ) were measured in the Pearl River Delta, which is one of the most polluted areas in China, in autumn?2014. The radical observations were complemented by measurements of OH reactivity (inverse OH lifetime) and a comprehensive set of trace gases including carbon monoxide (CO), nitrogen oxides ( NOsubx/sub=NO , NOsub2/sub ) and volatile organic compounds (VOCs). OH reactivity was in the range from 15 to 80 ssup?1/sup , of which about 50?% was unexplained by the measured OH reactants. In the 3?weeks of the campaign, maximum median radical concentrations were 4.5×10sup6/sup cmsup?3/sup for OH at noon and 3×10sup8/sup and 2.0×10sup8/sup cmsup?3/sup for HOsub2/sub and ROsub2/sub , respectively, in the early afternoon. The completeness of the daytime radical measurements made it possible to carry out experimental budget analyses for all radicals (OH, HOsub2/sub , and ROsub2/sub ) and their sum ( ROsubx/sub ). The maximum loss rates for OH, HOsub2/sub , and ROsub2/sub reached values between 10 and 15 ppbv?hsup?1/sup during the daytime. The largest fraction of this can be attributed to radical interconversion reactions while the real loss rate of ROsubx/sub remained below 3 ppbv?hsup?1/sup . Within experimental uncertainties, the destruction rates of HOsub2/sub and the sum of OH, HOsub2/sub , and ROsub2/sub are balanced by their respective production rates. In case of ROsub2/sub , the budget could be closed by attributing the missing OH reactivity to unmeasured VOCs. Thus, the presumption of the existence of unmeasured VOCs is supported by ROsub2/sub measurements. Although the closure of the ROsub2/sub budget is greatly improved by the additional unmeasured VOCs, a significant imbalance in the afternoon remains, indicating a missing ROsub2/sub sink. In case of OH, the destruction in the morning is compensated by the quantified OH sources from photolysis (HONO and Osub3/sub ), ozonolysis of alkenes, and OH recycling ( HOsub2/sub+NO ). In the afternoon, however, the OH budget indicates a missing OH source of 4 to 6 ppbv?hsup?1/sup . The diurnal variation of the missing OH source shows a similar pattern to that of the missing ROsub2/sub sink so that both largely compensate each other in the ROsubx/sub budget. These observations suggest the existence of a chemical mechanism that converts ROsub2/sub to OH without the involvement of NO, increasing the ROsub2/sub loss rate during the daytime from 5.3 to 7.4 ppbv?hsup?1/sup on average. The photochemical net ozone production rate calculated from the reaction of HOsub2/sub and ROsub2/sub with NO yields a daily integrated amount of 102 ppbv ozone, with daily integrated ROsubx/sub primary sources being 22 ppbv in this campaign. The produced ozone can be attributed to the oxidation of measured (18?%) and unmeasured (60?%) hydrocarbons, formaldehyde (14?%), and CO (8?%). An even larger integrated net ozone production of 140 ppbv would be calculated from the oxidation rate of VOCs with OH if HOsub2/sub and all ROsub2/sub radicals react with NO. However, the unknown ROsub2/sub loss (evident in the ROsub2/sub budget) causes 30 ppbv less ozone production than would be expected from the VOC oxidation rate.
机译:秋季在珠江三角洲测量了羟基(OH)和过氧自由基(HO 2 和RO 2 )? 2014。自由基观察结果通过测量OH反应性(与OH反向寿命)和一整套痕量气体(包括一氧化碳(CO),氮氧化物(NO x = NO,NO 2 < / sub>)和挥发性有机化合物(VOC)。 OH反应性在15至80s s -1的范围内,其中约50%是所测得的OH反应物无法解释的。在运动的3周中,最大中位自由基浓度为午间OH的4.5×10 6 cm ?3 和3×10 8 HO 2 和RO 2 分别为>和2.0×10 8 cm ?3 。白天自由基测量的完整性使得可以对所有自由基(OH,HO 2 和RO 2 )及其总和(RO x )。白天,OH,HO 2 和RO 2 的最大损失率达到10到15 ppbv?h ?1 之间。其中最大部分可归因于自由基相互转化反应,而RO x 的实际损失率仍低于3 ppbv?h ?1 。在实验不确定性范围内,HO 2 的破坏率以及OH,HO 2 和RO 2 的总和受其各自的生产率影响。在RO 2 的情况下,可以通过将缺少的OH反应性归因于未测量的VOC来关闭预算。因此,RO 2 测量结果支持了未测VOC的存在的推测。尽管通过额外的未测量的VOC大大改善了RO 2 预算的关闭,但是下午仍然存在显着的不平衡状态,这表明缺少RO 2 汇。如果是OH,则早晨的破坏可通过光解(HONO和O 3 ),烯烃的臭氧分解和OH循环利用(HO 2 )中定量的OH来补偿。 +否)。但是,在下午,OH预算指示缺少4到6 ppbv?h ?1 的OH源。 OH丢失源的日变化与RO 2 漏源的日变化相似,因此两者在RO x 预算中相互补偿。这些观察结果表明存在一种化学机制,可以将RO 2 转化为OH而没有NO的参与,从而使白天的RO 2 损失率从5.3 ppbv增加到7.4 ppbv? h ?1 平均。由HO 2 和RO 2 与NO的反应计算得出的光化学净臭氧产生速率产生的每日累积量为102 ppbv臭氧,每天累积的RO x 该广告系列的主要来源为22 ppbv。产生的臭氧可归因于已测定的(18%)和未测定的(60%)碳氢化合物,甲醛(14%)和CO(8%)的氧化。如果HO 2 和所有RO 2 自由基与NO反应,则VOCs与OH的氧化速率可计算出甚至更大的140 ppbv的臭氧综合净产量。但是,未知的RO 2 损失(在RO 2 预算中明显)导致的臭氧生成量比VOC氧化速率所预期的少30 ppbv。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号