首页> 外文期刊>Atmospheric Chemistry and Physics Discussions >Non-OH chemistry in oxidation flow reactors for the study of atmospheric chemistry systematically examined by modeling
【24h】

Non-OH chemistry in oxidation flow reactors for the study of atmospheric chemistry systematically examined by modeling

机译:通过建模系统地检查了用于研究大气化学的氧化流反应器中的非OH化学

获取原文
           

摘要

pstrongAbstract./strong Oxidation flow reactors (OFRs) using low-pressure Hg lamp emission at 185 and 254span class="thinspace"/spannm produce OH radicals efficiently and are widely used in atmospheric chemistry and other fields. However, knowledge of detailed OFR chemistry is limited, allowing speculation in the literature about whether some non-OH reactants, including several not relevant for tropospheric chemistry, may play an important role in these OFRs. These non-OH reactants are UV radiation, O(sup1/supD), O(sup3/supP), and Osub3/sub. In this study, we investigate the relative importance of other reactants to OH for the fate of reactant species in OFR under a wide range of conditions via box modeling. The relative importance of non-OH species is less sensitive to UV light intensity than to water vapor mixing ratio (Hsub2/subO) and external OH reactivity (OHRsubext/sub), as both non-OH reactants and OH scale roughly proportionally to UV intensity. We show that for field studies in forested regions and also the urban area of Los Angeles, reactants of atmospheric interest are predominantly consumed by OH. We find that O(sup1/supD), O(sup3/supP), and Osub3/sub have relative contributions to volatile organic compound (VOC) consumption that are similar or lower than in the troposphere. The impact of O atoms can be neglected under most conditions in both OFR and troposphere. We define a??riskier OFR conditionsa?? as those with either low Hsub2/subO (&span class="thinspace"/span0.1span class="thinspace"/span%) or high OHRsubext/sub (a??a?¥a??span class="thinspace"/span100span class="thinspace"/spanssupa??1/sup in OFR185 and &span class="thinspace"/span200span class="thinspace"/spanssupa??1/sup in OFR254). We strongly suggest avoiding such conditions as the importance of non-OH reactants can be substantial for the most sensitive species, although OH may still dominate under some riskier conditions, depending on the species present. Photolysis at non-tropospheric wavelengths (185 and 254span class="thinspace"/spannm) may play a significant (&span class="thinspace"/span20span class="thinspace"/span%) role in the degradation of some aromatics, as well as some oxidation intermediates, under riskier reactor conditions, if the quantum yields are high. Under riskier conditions, some biogenics can have substantial destructions by Osub3/sub, similarly to the troposphere. Working under low Osub2/sub (volume mixing ratio of 0.002) with the OFR185 mode allows OH to completely dominate over Osub3/sub reactions even for the biogenic species most reactive with Osub3/sub. Non-tropospheric VOC photolysis may have been a problem in some laboratory and source studies, but can be avoided or lessened in future studies by diluting source emissions and working at lower precursor concentrations in laboratory studies and by humidification. Photolysis of secondary organic aerosol (SOA) samples is estimated to be significant (&span class="thinspace"/span20span class="thinspace"/span%) under the upper limit assumption of unity quantum yield at medium (1a????a??10sup13/sup and 1.5a????a??10sup15/sup??photonsspan class="thinspace"/spancmsupa??2/supspan class="thinspace"/spanssupa??1/sup at 185 and 254span class="thinspace"
机译:> >摘要。利用低压Hg灯在185和254nm发射的氧化流反应器(OFR)有效产生OH自由基,并被广泛使用在大气化学等领域。然而,对详细的OFR化学的了解是有限的,这允许在文献中推测某些非OH反应物(包括与对流层化学无关的几种)是否可能在这些OFR中起重要作用。这些非OH反应物是UV辐射,O( 1 D),O( 3 P)和O 3 。在这项研究中,我们通过箱形模型研究了在多种条件下,OFR中其他反应物对OH相对命运的相对重要性。非OH种类的相对重要性对UV光强度的敏感性低于对水蒸气混合比(H 2 O)和外部OH反应性(OHR ext )的敏感性,因为非OH反应物和OH均与紫外线强度成比例。我们表明,在森林地区以及洛杉矶市区进行实地研究时,对大气感兴趣的反应物主要被OH消耗。我们发现O( 1 D),O( 3 P)和O 3 对挥发性有机化合物(VOC)的消耗有相对贡献与对流层中的相似或更低。在OFR和对流层的大多数条件下,O原子的影响都可以忽略。我们定义了一个“风险较高的OFR条件”?例如H 2 O低(& class =“ thinspace”> 0.1 class =“ thinspace”> %)或OHR ext (a ?? a?¥ a ?? class =“ thinspace”> 100 class =“ thinspace”> s a ?? 1 < / sup>(在OFR185中为 class =“ thinspace”> 200 class =“ thinspace”> s a ?? 1 )。我们强烈建议避免使用这样的条件,因为对于最敏感的物质,非OH反应物的重要性可能很高,尽管在某些危险条件下OH仍可能占主导地位,具体取决于所存在的物质。在非对流层波长(185和254 class =“ thinspace”> nm)上的光解作用可能很明显(& class =“ thinspace”> 20 class =“ thinspace “> %)在较高风险的反应器条件下(如果量子产率很高)在某些芳族化合物以及某些氧化中间体的降解中的作用。与对流层相似,在风险较高的条件下,某些生物基因可能被O 3 破坏。在低O 2 (体积混合比为0.002)下使用OFR185模式工作,即使对于与O 3最具反应性的生物物种,OH也会完全胜过O 3 反应> 3 。在某些实验室和源研究中,非对流层VOC光解可能是一个问题,但在以后的研究中,可以通过稀释源排放物并在实验室研究和加湿中以较低的前体浓度工作来避免或减少这种情况。在以下假设的上限假设下,次级有机气溶胶(SOA)样品的光解作用估计很明显(& class =“ thinspace”> 20 class =“ thinspace”> %)中等(1a ???? a ?? 10 13 和1.5a ???? a ?? 10 15 ??光子 class =“ thinspace“> cm a ?? 2 class =” thinspace“> s a ?? 1 在185和254 class =“ thinspace”

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号