首页> 外文期刊>Atmospheric Chemistry and Physics Discussions >Sensitivity of Arctic sulfate aerosol and clouds to changes in future surface seawater dimethylsulfide concentrations
【24h】

Sensitivity of Arctic sulfate aerosol and clouds to changes in future surface seawater dimethylsulfide concentrations

机译:北极硫酸盐气溶胶和云对未来地表海水二甲基硫浓度变化的敏感性

获取原文
           

摘要

Dimethylsulfide?(DMS), outgassed from ocean waters, plays an important role in the climate system, as it oxidizes to methane sulfonic acid?(MSA) and sulfur dioxide?( SOsub2/sub ), which can lead to the formation of sulfate aerosol. Newly formed sulfate aerosol resulting from DMS oxidation may grow by condensation of gases, in-cloud oxidation, and coagulation to sizes where they may act as cloud condensation nuclei?(CCN) and influence cloud properties. Under future global warming conditions, sea ice in the Arctic region is expected to decline significantly, which may lead to increased emissions of DMS from the open ocean and changes in cloud regimes. In this study we evaluate impacts of DMS on Arctic sulfate aerosol budget, changes in cloud droplet number concentration?(CDNC), and cloud radiative forcing in the Arctic region under current and future sea ice conditions using an atmospheric global climate model. Given that future DMS concentrations are highly uncertain, several simulations with different surface seawater DMS concentrations and spatial distributions in the Arctic were performed in order to determine the sensitivity of sulfate aerosol budgets, CDNC, and cloud radiative forcing to Arctic surface seawater DMS concentrations. For any given amount and distribution of Arctic surface seawater DMS, similar amounts of sulfate are produced by oxidation of DMS in?2000 and?2050 despite large increases in DMS emission in the latter period due to sea ice retreat in the simulations. This relatively low sensitivity of sulfate burden is related to enhanced sulfate wet removal by precipitation in?2050. However simulated aerosol nucleation rates are higher in?2050, which results in an overall increase in CDNC and substantially more negative cloud radiative forcing. Thus potential future reductions in sea ice extent may cause cloud albedos to increase, resulting in a negative climate feedback on radiative forcing in the Arctic associated with ocean DMS emissions.
机译:从海水中排出的二甲基硫醚(DMS)在气候系统中起着重要作用,因为它会氧化成甲烷磺酸(MSA)和二氧化硫(SO 2 ),从而导致形成硫酸盐气溶胶。 DMS氧化产生的新形成的硫酸盐气溶胶可能会通过气体凝结,云内氧化和凝结而生长到一定大小,在这些尺寸下它们可能充当云凝结核(CCN)并影响云的性质。在未来的全球变暖条件下,预计北极地区的海冰将大大减少,这可能导致来自公海的DMS排放量增加以及云系统的变化。在这项研究中,我们使用大气全球气候模型评估了DMS对北极硫酸盐气溶胶收支,云滴数浓度变化(CDNC)以及北极在当前和未来海冰条件下北极地区的云辐射强迫的影响。鉴于未来DMS的浓度高度不确定,为了确定硫酸盐气溶胶收支,CDNC和云辐射强迫对北极地表海水DMS浓度的敏感性,对北极不同地表海水DMS浓度和空间分布进行了多次模拟。对于任何给定数量和分布的北极表层海水DMS,尽管在模拟中由于海冰的退缩而导致DMS排放在后期增加了很多,但在2000年和2050年,DMS的氧化产生了类似量的硫酸盐。相对较低的硫酸盐负荷敏感性与2050年前通过沉淀增加的硫酸盐湿法去除有关。然而,在2050年左右,模拟的气溶胶成核速率更高,这导致CDNC总体增加,并且云辐射强迫大大增加。因此,未来潜在的海冰面积减少可能会导致云的反照率增加,从而导致北极地区与海洋DMS排放有关的辐射强迫产生负面的气候反馈。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号