首页> 外文期刊>Atmospheric chemistry and physics >Quantifying immediate radiative forcing by black carbon and organic matter with the Specific Forcing Pulse
【24h】

Quantifying immediate radiative forcing by black carbon and organic matter with the Specific Forcing Pulse

机译:利用比强迫脉冲定量分析黑碳和有机物的即时辐射强迫

获取原文
           

摘要

Climatic effects of short-lived climate forcers (SLCFs) differ from those oflong-lived greenhouse gases, because they occur rapidly after emission andbecause they depend upon the region of emission. The distinctive temporaland spatial nature of these impacts is not captured by measures that rely onglobal averages or long time integrations. Here, we propose a simplemeasure, the Specific Forcing Pulse (SFP), to quantify climate warming orcooling by these pollutants, where we define "immediate" as occurringprimarily within the first year after emission. SFP is the amount of energyadded to or removed from a receptor region in the Earth-atmosphere system bya chemical species, per mass of emission in a source region. We limit theapplication of SFP to species that remain in the atmosphere for less thanone year. Metrics used in policy discussions, such as total forcing orglobal warming potential, are easily derived from SFP. However, SFP conveyspurely physical information without incurring the policy implications ofchoosing a time horizon for the global warming potential.Using one model (Community Atmosphere Model, or CAM), we calculate values ofSFP for black carbon (BC) and organic matter (OM) emitted from 23source-region combinations. Global SFP for both atmosphere and cryosphereimpacts is divided among receptor latitudes. SFP is usually greater foropen-burning emissions than for energy-related (fossil-fuel and biofuel)emissions because of the timing of emission. Global SFP for BC varies byabout 45% for energy-related emissions from different regions. Thisvariation would be larger except for compensating effects. When emittedaerosol has larger cryosphere forcing, it often has lower atmosphere forcingbecause of less deep convection and a shorter atmospheric lifetime.A single model result is insufficient to capture uncertainty. We develop abest estimate and uncertainties for SFP by combining forcing results from 12additional models. We outline a framework for combining a large number ofsimple models with a smaller number of enhanced models that have greatercomplexity. Adjustments for black carbon internal mixing and for regionalvariability are discussed. Emitting regions with more deep convection havegreater model diversity. Our best estimate of global-mean SFP is +1.03 ± 0.52 GJ g−1for direct atmosphere forcing of black carbon, +1.15 ± 0.53 GJ g−1 for black carbon including direct and cryosphere forcing,and −0.064 (−0.02, −0.13) GJ g−1 for organic matter. These values dependon the region and timing of emission. The lowest OM:BC mass ratio requiredto produce a neutral effect on top-of-atmosphere direct forcing is 15:1 forany region. Any lower ratio results in positive direct forcing. However,important processes, particularly cloud changes that tend toward cooling,have not been included here.Global-average SFP for energy-related emissions can be converted to a100-year GWP of about 740 ± 370 for BC without snow forcing, and 830 ± 440 with snow forcing. 100-year GWP for OM is −46 (−18, −92). Best estimatesof atmospheric radiative impact (without snow forcing) by black and organicmatter are +0.47 ± 0.26 W m−2 and −0.17 (−0.07, −0.35) W m−2for BC and OM, respectively, assuming total emission rates of 7.4 and45 Tg yr?1. Anthropogenic forcing is +0.40 ± 0.18 W m−2 and −0.13(−0.05, −0.25) W m−2 for BC and OM, respectively, assuming anthropogenicemission rates of 6.3 and 32.6 Tg yr−1. Black carbon forcing is only18% higher than that given by the Intergovernmental Panel on ClimateChange (IPCC), although the value presented here includes enhancedabsorption due to internal mixing.
机译:短期气候推动者(SLCF)的气候影响与长期温室气体的影响不同,因为它们在排放后迅速发生,并且取决于排放区域。这些影响的独特的时空特征无法通过依赖于全球平均值或长期积分的方法来捕捉。在这里,我们提出了一种简单的措施,即比强迫脉冲(SFP),以量化这些污染物引起的气候变暖或降温,在此我们将“即时”定义为主要在排放后的第一年内发生。 SFP是指化学物质在源-大气系统中每增加一单位的发射质量,向地球-大气系统中的受体区域添加或从中移除的能量。我们将SFP的应用仅限于在大气中停留不到一年的物种。政策讨论中使用的指标,例如总强迫或全球变暖潜力,很容易从SFP中得出。但是,SFP可以准确地传达物理信息,而不会产生为全球变暖潜力选择时间范围的政策含义。 使用一个模型(社区大气模型,即CAM),我们可以计算出黑碳(BC)的SFP值和23种源区组合排放的有机物(OM)。大气和冰冻圈影响的全局SFP在受体纬度之间划分。由于排放时间的原因,露天燃烧排放的SFP通常比能源相关的排放(化石燃料和生物燃料)大。来自不同地区的与能源相关的排放量,BC省的全球SFP变化约45%。除了补偿效果之外,该变化将更大。当排放的气溶胶具有较大的冰冻圈强迫时,由于对流深度较小且大气寿命较短,因此通常具有较低的大气强迫。 单个模型结果不足以捕获不确定性。我们通过结合来自12个其他模型的强迫结果来得出SFP的最佳估计和不确定性。我们概述了一个框架,用于将大量的简单模型与数量较少且具有较高复杂性的增强模型相结合。讨论了黑碳内部混合和区域变异性的调整。对流较深的发射区域具有更大的模型多样性。对于黑气的直接大气强迫,我们对全局平均值SFP的最佳估计是+1.03±0.52 GJ g -1 ,黑碳的+1.15±0.53 GJ g -1 包括直接和冰冻圈强迫,以及-0.064(-0.02,-0.13)GJ g -1 。这些值取决于发射的区域和时间。在任何区域,对大气顶直接强迫产生中性作用所需的最低OM:BC质量比为15:1。任何较低的比率都会导致正向强制。但是,这里未包括重要的过程,特别是趋于冷却的云变化。 与能源相关的排放的全球平均SFP可以转换为BC的约740±370的100年GWP没有强制降雪,以及830±440有强制降雪。 OM的100年GWP为−46(−18,−92)。黑色和有机物对大气辐射影响(无降雪)的最佳估计为+0.47±0.26 W m -2 和-0.17(-0.07,-0.35)W m -2 。假设人为排放速率为,BC和OM的人为强迫分别为+0.40±0.18 W m -2 和-0.13(-0.05,-0.25)W m -2 6.3和32.6 Tg yr -1 。尽管此处呈现的值包括由于内部混合而导致的吸收增强,但黑碳强迫仅比政府间气候变化专门委员会(IPCC)给出的高18%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号