首页> 外文期刊>Atmospheric chemistry and physics >Fire emission heights in the climate system – Part 2: Impact on transport, black carbon concentrations and radiation
【24h】

Fire emission heights in the climate system – Part 2: Impact on transport, black carbon concentrations and radiation

机译:气候系统中的火灾发射高度–第2部分:对运输,黑碳浓度和辐射的影响

获取原文
           

摘要

Wildfires represent a major source for aerosols impacting atmospheric radiation, atmospheric chemistry and cloud micro-physical properties. Previous case studies indicated that the height of the aerosol–radiation interaction may crucially affect atmospheric radiation, but the sensitivity to emission heights has been examined with only a few models and is still uncertain. In this study we use the general circulation model ECHAM6 extended by the aerosol module HAM2 to investigate the impact of wildfire emission heights on atmospheric long-range transport, black carbon (BC) concentrations and atmospheric radiation. We simulate the wildfire aerosol release using either various versions of a semi-empirical plume height parametrization or prescribed standard emission heights in ECHAM6-HAM2. Extreme scenarios of near-surface or free-tropospheric-only injections provide lower and upper constraints on the emission height climate impact. We find relative changes in mean global atmospheric BC burden of up to 7.9±4.4 % caused by average changes in emission heights of 1.5–3.5 km. Regionally, changes in BC burden exceed 30–40 % in the major biomass burning regions. The model evaluation of aerosol optical thickness (AOT) against Moderate Resolution Imaging Spectroradiometer (MODIS), AErosol RObotic NETwork (AERONET) and Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) observations indicates that the implementation of a plume height parametrization slightly reduces the ECHAM6-HAM2 biases regionally, but on the global scale these improvements in model performance are small. For prescribed emission release at the surface, wildfire emissions entail a total sky top-of-atmosphere (TOA) radiative forcing (RF) of −0.16±0.06 W m−2. The application of a plume height parametrization which agrees reasonably well with observations introduces a slightly stronger negative TOA RF of −0.20±0.07 W m−2. The standard ECHAM6-HAM2 model in which 25 % of the wildfire emissions are injected into the free troposphere (FT) and 75 % into the planetary boundary layer (PBL), leads to a TOA RF of −0.24±0.06 W m−2. Overall, we conclude that simple plume height parametrizations provide sufficient representations of emission heights for global climate modeling. Significant improvements in aerosol wildfire modeling likely depend on better emission inventories and aerosol process modeling rather than on improved emission height parametrizations.
机译:野火是影响大气辐射,大气化学和云微物理特性的气溶胶的主要来源。先前的案例研究表明,气溶胶-辐射相互作用的高度可能会严重影响大气辐射,但仅通过少数几个模型就对排放高度的敏感性进行了研究,但仍不确定。在这项研究中,我们使用由气溶胶模块HAM2扩展的通用循环模型ECHAM6来研究野火发射高度对大气远程传输,黑碳(BC)浓度和大气辐射的影响。我们使用ECHAM6-HAM2中半经验羽高参数化的各种版本或指定的标准排放高度来模拟野火气溶胶的释放。仅在近地表层或仅在对流层中进行喷射的极端情况对排放高度气候影响提供了较高和较低的限制。我们发现,由1.5–3.5 km的发射高度平均变化引起的平均全球大气BC负担的相对变化高达7.9±4.4%。从区域来看,在主要的生物质燃烧地区,BC负担的变化超过30%至40%。针对中等分辨率成像光谱仪(MODIS),AErosol机器人网络(AERONET)和具有正交偏振的云气激光雷达(CALIOP)观测值对气溶胶光学厚度(AOT)进行模型评估,表明烟羽高度参数化的实施会稍微降低ECHAM6 -HAM2在区域上存在偏差,但在全球范围内,模型性能的这些改进很小。对于规定的地表排放量,野火排放导致总的空中大气顶(TOA)辐射强迫(RF)为-0.16±0.06 W m -2 。与观测值相当吻合的羽流高度参数化的应用引入了-0.20±0.07 W m -2 稍强的负TOA RF。标准ECHAM6-HAM2模型将25%的野火排放注入自由对流层(FT),并将75%的注入野对流层(PBL),导致TOA RF为-0.24±0.06 W m −2 。总的来说,我们得出结论,简单的羽流高度参数化可以为全球气候模拟提供足够的排放高度表示。气溶胶野火模型的重大改进可能取决于更好的排放清单和气溶胶过程模型,而不是取决于改进的排放高度参数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号