首页> 外文期刊>Applied Sciences >Applying Improved Multiscale Fuzzy Entropy for Feature Extraction of MI-EEG
【24h】

Applying Improved Multiscale Fuzzy Entropy for Feature Extraction of MI-EEG

机译:改进的多尺度模糊熵在MI-EEG特征提取中的应用

获取原文
       

摘要

Electroencephalography (EEG) is considered the output of a brain and it is a bioelectrical signal with multiscale and nonlinear properties. Motor Imagery EEG (MI-EEG) not only has a close correlation with the human imagination and movement intention but also contains a large amount of physiological or disease information. As a result, it has been fully studied in the field of rehabilitation. To correctly interpret and accurately extract the features of MI-EEG signals, many nonlinear dynamic methods based on entropy, such as Approximate Entropy (ApEn), Sample Entropy (SampEn), Fuzzy Entropy (FE), and Permutation Entropy (PE), have been proposed and exploited continuously in recent years. However, these entropy-based methods can only measure the complexity of MI-EEG based on a single scale and therefore fail to account for the multiscale property inherent in MI-EEG. To solve this problem, Multiscale Sample Entropy (MSE), Multiscale Permutation Entropy (MPE), and Multiscale Fuzzy Entropy (MFE) are developed by introducing scale factor. However, MFE has not been widely used in analysis of MI-EEG, and the same parameter values are employed when the MFE method is used to calculate the fuzzy entropy values on multiple scales. Actually, each coarse-grained MI-EEG carries the characteristic information of the original signal on different scale factors. It is necessary to optimize MFE parameters to discover more feature information. In this paper, the parameters of MFE are optimized independently for each scale factor, and the improved MFE (IMFE) is applied to the feature extraction of MI-EEG. Based on the event-related desynchronization (ERD)/event-related synchronization (ERS) phenomenon, IMFE features from multi channels are fused organically to construct the feature vector. Experiments are conducted on a public dataset by using Support Vector Machine (SVM) as a classifier. The experiment results of 10-fold cross-validation show that the proposed method yields relatively high classification accuracy compared with other entropy-based and classical time–frequency–space feature extraction methods. The t -test is used to prove the correctness of the improved MFE.
机译:脑电图(EEG)被认为是大脑的输出,它是具有多尺度和非线性特性的生物电信号。运动图像脑电图(MI-EEG)不仅与人类的想象力和运动意图密切相关,而且还包含大量的生理或疾病信息。结果,已经在康复领域进行了充分的研究。为了正确地解释和准确提取MI-EEG信号的特征,许多基于熵的非线性动态方法,例如近似熵(ApEn),样本熵(SampEn),模糊熵(FE)和置换熵(PE),都有近年来被不断提出和利用。但是,这些基于熵的方法只能基于单个尺度来测量MI-EEG的复杂性,因此无法考虑MI-EEG固有的多尺度属性。为了解决这个问题,通过引入比例因子,开发了多尺度样本熵(MSE),多尺度置换熵(MPE)和多尺度模糊熵(MFE)。然而,MFE在MI-EEG分析中并未得到广泛应用,当使用MFE方法在多个尺度上计算模糊熵值时,会使用相同的参数值。实际上,每个粗粒度的MI-EEG都在不同的比例因子上承载原始信号的特征信息。有必要优化MFE参数以发现更多功能信息。本文针对每个比例因子对MFE的参数进行独立优化,并将改进的MFE(IMFE)应用于MI-EEG的特征提取。基于事件相关的不同步(ERD)/事件相关的同步(ERS)现象,将来自多通道的IMFE特征进行有机融合以构建特征向量。通过使用支持向量机(SVM)作为分类器,对公共数据集进行实验。 10倍交叉验证的实验结果表明,与其他基于熵的经典时频特征提取方法相比,该方法具有较高的分类精度。 t检验用于证明改进的MFE的正确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号